Surface-wave magnitude

Last updated

The surface wave magnitude () scale is one of the magnitude scales used in seismology to describe the size of an earthquake. It is based on measurements of Rayleigh surface waves that travel along the uppermost layers of the Earth. This magnitude scale is related to the local magnitude scale proposed by Charles Francis Richter in 1935, with modifications from both Richter and Beno Gutenberg throughout the 1940s and 1950s. [1] [2] It is currently used in People's Republic of China as a national standard (GB 17740-1999) for categorising earthquakes. [3]

Contents

The successful development of the local-magnitude scale encouraged Gutenberg and Richter to develop magnitude scales based on teleseismic observations of earthquakes. Two scales were developed, one based on surface waves, , and one on body waves, . Surface waves with a period near 20 s generally produce the largest amplitudes on a standard long-period seismograph, and so the amplitude of these waves is used to determine , using an equation similar to that used for .

William L. Ellsworth, The San Andreas Fault System, California (USGS Professional Paper 1515), 1990–1991

Recorded magnitudes of earthquakes through the mid 20th century, commonly attributed to Richter, could be either or .

Definition

The formula to calculate surface wave magnitude is: [3]

where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ±2 seconds), Δ is the epicentral distance in °, and

Several versions of this equation were derived throughout the 20th century, with minor variations in the constant values. [2] [4] Since the original form of was derived for use with teleseismic waves, namely shallow earthquakes at distances >100 km from the seismic receiver, corrections must be added to the computed value to compensate for epicenters deeper than 50 km or less than 20° from the receiver. [4]

For official use by the Chinese government, [3] the two horizontal displacements must be measured at the same time or within 1/8 of a period; if the two displacements have different periods, a weighted sum must be used:

where AN is the north–south displacement in μm, AE is the east–west displacement in μm, TN is the period corresponding to AN in s, and TE is the period corresponding to AE in s.

Other studies

Vladimír Tobyáš and Reinhard Mittag proposed to relate surface wave magnitude to local magnitude scale ML, using [5]

Other formulas include three revised formulae proposed by CHEN Junjie et al.: [6]

and

See also

Notes and references

  1. William L. Ellsworth (1991). "SURFACE-WAVE MAGNITUDE (MS) AND BODY-WAVE MAGNITUDE (mb)". USGS. Retrieved 2008-09-14.
  2. 1 2 Kanamori, Hiroo (April 1983). "Magnitude scale and quantification of earthquakes". Tectonophysics. 93 (3–4): 185–199. Bibcode:1983Tectp..93..185K. doi:10.1016/0040-1951(83)90273-1.
  3. 1 2 3 XU Shaokui, LU Yuanzhong, GUO Lucan, CHEN Shanpei, XU Zhonghuai, XIAO Chengye, FENG Yijun (许绍燮、陆远忠、郭履灿、陈培善、许忠淮、肖承邺、冯义钧) (1999-04-26). "Specifications on Seismic Magnitudes (地震震级的规定)" (in Chinese). General Administration of Quality Supervision, Inspection, and Quarantine of P.R.C. Archived from the original on 2009-04-24. Retrieved 2008-09-14.{{cite web}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 Bath, M (1966). "Earthquake energy and magnitude". In Ahrens, L. H.; Press, F.; Runcorn, S. (eds.). Physics and Chemistry of the Earth. Pergamon Press. pp. 115–165.
  5. Vladimír Tobyáš and Reinhard Mittag (1991-02-06). "Local magnitude, surface wave magnitude and seismic energy". Studia Geophysica et Geodaetica. 35 (4): 354. Bibcode:1991StGG...35..354T. doi:10.1007/BF01613981. S2CID   128567958. Archived from the original on 2013-01-04. Retrieved 2008-09-14.
  6. CHEN Junjie, CHI Tianfeng, WANG Junliang, CHI Zhencai (陈俊杰, 迟天峰, 王军亮, 迟振才) (2002-01-01). "Study of Surface Wave Magnitude in China (中国面波震级研究)" (in Chinese). Journal of Seismological Research (《地震研究》). Retrieved 2008-09-14.{{cite web}}: CS1 maint: multiple names: authors list (link)[ permanent dead link ]

Related Research Articles

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

<span class="mw-page-title-main">Quantization (signal processing)</span> Process of mapping a continuous set to a countable set

Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms.

Sound pressure or acoustic pressure is the local pressure deviation from the ambient atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).

Particle velocity is the velocity of a particle in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string.

Particle displacement or displacement amplitude is a measurement of distance of the movement of a sound particle from its equilibrium position in a medium as it transmits a sound wave. The SI unit of particle displacement is the metre (m). In most cases this is a longitudinal wave of pressure, but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling.

Seismic moment is a quantity used by seismologists to measure the size of an earthquake. The scalar seismic moment is defined by the equation , where

The moment magnitude scale is a measure of an earthquake's magnitude based on its seismic moment. Mw was defined in a 1979 paper by Thomas C. Hanks and Hiroo Kanamori. Similar to the local magnitude/Richter scale (ML ) defined by Charles Francis Richter in 1935, it uses a logarithmic scale; small earthquakes have approximately the same magnitudes on both scales. Despite the difference, news media often use the term "Richter scale" when referring to the moment magnitude scale.

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

In a compressible sound transmission medium - mainly air - air particles get an accelerated motion: the particle acceleration or sound acceleration with the symbol a in metre/second2. In acoustics or physics, acceleration is defined as the rate of change of velocity. It is thus a vector quantity with dimension length/time2. In SI units, this is m/s2.

Seismicity is a measure encompassing earthquake occurrences, mechanisms, and magnitude at a given geographical location. As such, it summarizes a region's seismic activity. The term was coined by Beno Gutenberg and Charles Francis Richter in 1941. Seismicity is studied by geophysicists.

Seismic magnitude scales are used to describe the overall strength or "size" of an earthquake. These are distinguished from seismic intensity scales that categorize the intensity or severity of ground shaking (quaking) caused by an earthquake at a given location. Magnitudes are usually determined from measurements of an earthquake's seismic waves as recorded on a seismogram. Magnitude scales vary based on what aspect of the seismic waves are measured and how they are measured. Different magnitude scales are necessary because of differences in earthquakes, the information available, and the purposes for which the magnitudes are used.

<span class="mw-page-title-main">Epicentral distance</span>

Epicentral distance refers to the ground distance from the epicenter to a specified point. Generally, the smaller the epicentral distance of an earthquake of the same scale, the heavier the damage caused by the earthquake. On the contrary, with the increase of epicentral distance, the damage caused by the earthquake is gradually reduced. Due to the limitation of seismometers designed in the early years, some seismic magnitude scales began to show errors when the epicentral distance exceeded a certain range from the observation points. In seismology, the unit of far earthquakes is usually ° (degree), while the unit of near earthquakes is km. But regardless of distance, Δ is used as a symbol for the epicentral distance.

Linear motion, also called rectilinear motion, is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion, with constant velocity ; and non-uniform linear motion, with variable velocity. The motion of a particle along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running a 100-meter dash along a straight track.

The Richter scale, also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". This was later revised and renamed the local magnitude scale, denoted as ML or ML .

<span class="mw-page-title-main">Velocity</span> Speed and direction of a motion

Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

The concept of Earthquake Duration Magnitude – originally proposed by E. Bisztricsany in 1958 using surface waves only - is based on the realization that on a recorded earthquake seismogram, the total length of the seismic wavetrain – sometimes referred to as the CODA – reflects its size. Thus larger earthquakes give longer seismograms [as well as stronger seismic waves] than small ones. The seismic wave interval measured on the time axis of an earthquake record - starting with the first seismic wave onset until the wavetrain amplitude diminishes to at least 10% of its maximum recorded value - is referred to as "earthquake duration". It is this concept that Bisztricsany first used to develop his Earthquake Duration Magnitude Scale employing surface wave durations.

<span class="mw-page-title-main">Linear seismic inversion</span> Interpretation of seismic data using linear model

Inverse modeling is a mathematical technique where the objective is to determine the physical properties of the subsurface of an earth region that has produced a given seismogram. Cooke and Schneider (1983) defined it as calculation of the earth's structure and physical parameters from some set of observed seismic data. The underlying assumption in this method is that the collected seismic data are from an earth structure that matches the cross-section computed from the inversion algorithm. Some common earth properties that are inverted for include acoustic velocity, formation and fluid densities, acoustic impedance, Poisson's ratio, formation compressibility, shear rigidity, porosity, and fluid saturation.

<span class="mw-page-title-main">Two-ray ground-reflection model</span> Multipath radio propagation model

The two-rays ground-reflection model is a multipath radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in line of sight (LOS). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave.

A seismic array is a system of linked seismometers arranged in a regular geometric pattern to increase sensitivity to earthquake and explosion detection. A seismic array differs from a local network of seismic stations mainly by the techniques used for data analysis. The data from a seismic array is obtained using special digital signal processing techniques such as beamforming, which suppress noises and thus enhance the signal-to-noise ratio (SNR).

<span class="mw-page-title-main">Wood–Anderson seismometer</span> Instrument fo measuring strength of earthquakes

The Wood–Anderson seismometer is a torsion seismometer developed in the United States by Harry O. Wood and John August Anderson in the 1920s to record local earthquakes in southern California. It photographically records the horizontal motion. The seismometer uses a pendulum of 0.8g, its period is 0.8 seconds, its magnification is 2,800 times, and its damping constant is 0.8. Charles Francis Richter developed the Richter magnitude scale using the Wood–Anderson seismometer.