Volcano tectonic earthquake

Last updated

A volcano tectonic earthquake or volcano earthquake is caused by the movement of magma beneath the surface of the Earth. [1] The movement results in pressure changes where the rock around the magma has a change in stress. At some point, this stress can cause the rock to break or move. This seismic activity is used by scientists to monitor volcanoes. [2] The earthquakes may also be related to dike intrusion and/or occur as earthquake swarms. [3] Usually they are characterised by high seismic frequency and lack the pattern of a main shock followed by a decaying aftershock distribution of fault related tectonic earthquakes. [2] :139

Contents

Cause of volcano tectonic earthquakes

Four types of seismograms, or seismic signatures Four-types-seismograms.gif
Four types of seismograms, or seismic signatures

One possible scenario resulting in a possible volcano tectonic earthquake occurs in tectonic subduction zones. The compression of plates at these subduction zones forces the magma beneath them to move. [4] Magma can not move through the newly compressed crust as easily. This means it tends to pool in magma chambers beneath the surface and between the converging tectonic plates. Many of the famous and most well known volcanoes are of this type, including those of the Ring of Fire. As the plates move, magma underground may be forced in and out of these chambers and form intrusions into surrounding crust. This movement is capable of causing the unstable rocks around it to cave in or shift. The movement of this magma as described, causes measurable seismic activity. [4] Where plates diverge such as at mid-ocean ridges the magma also can move into storage chambers and form intrusions again causing shifts in the rocks around them that can be detected as earthquakes. This is separate from earthquakes directly related to faults. However it is known than tectonic earthquake triggering has occurred with some volcanic eruptions, and there may be other associations of these in place and time with some eruptions, which could cause confusion because of the similar terminology. [5]

Scientists monitoring volcanoes have noticed that magma movement may lead to earthquake swarms depending on the movement of magma and the interaction with rock beneath the ground. Additionally, the volatility of volcanoes and the accompanying earthquakes has been shown to be linked to dike induced stress and the interaction this causes between the magma, rock, and wall of the chamber. [3]

Importance

Nevado del Ruiz during the 1985 eruption. This eruption was one where seismic activity was monitored in order to determine that an eruption was imminent. Nevado del Ruiz 1985.jpg
Nevado del Ruiz during the 1985 eruption. This eruption was one where seismic activity was monitored in order to determine that an eruption was imminent.

Volcano tectonic seismicity is an important tool as it may predict the eruptions of volcanoes. Seismic activity occurs as a precursor to most large eruptions. Rarely, because of complex interactions, it may appear to settle just before an eruption. [6] Such tectonic events can predict eruptions in long-dormant volcanoes and the size of the magma pocket. [2] Some notable examples of eruptions preceded by volcano tectonic earthquakes include ones at Nevado del Ruiz (1985), Pinatubo (1991), Unzen (1990), and Cotopaxi (2002). Quakes with volcano-tectonic characteristics accompany magmatic intrusions in near real time.

Use in monitoring volcanoes

Nearly every recorded volcanic eruption has been preceded by some form of earthquake activity beneath or near the volcano. This does not mean that always this activity will give sufficient warning of an eruption. [7] However, for individual volcanoes, the relationship between earthquakes and magma movement or possible eruptions has resulted in approximately 200 of the world's volcanoes being seismically monitored. [8] The recording of several years of background seismic data has allowed classification of volcanic earthquakes. These earthquakes tend to occur in swarms as opposed to mainshock–aftershock sequences, have smaller maximum sizes than tectonic structure earthquakes, have similar waveform patterns, increase in number before eruptions, and occur near or beneath the site of the eruption. Volcano tectonic earthquake seismicity typically originates lateral to the site of the volcanic eruption to come, at tectonic fault structures a few kilometres away. [2] Such earthquakes have a large non-double couple component to their focal mechanism. [2]

Other types of seismic activity monitored in relation to volcanoes and their eruptions are long period seismic waves (caused by sudden sporadic movement of magma that had previously not been moving due to a blockage), and harmonic tremor (indicating steady magma movement).

Related Research Articles

<span class="mw-page-title-main">Sunda Arc</span> Volcanic island arc in Indonesia

The Sunda Arc is a volcanic arc that produced the volcanoes that form the topographic spine of the islands of Sumatra, Nusa Tenggara, Java, the Sunda Strait, and the Lesser Sunda Islands. The Sunda Arc begins at Sumatra and ends at Flores, and is adjacent to the Banda Arc. The Sunda Arc is formed via the subduction of the Indo-Australian Plate beneath the Sunda and Burma plates at a velocity of 63–70 mm/year.

<span class="mw-page-title-main">Prediction of volcanic activity</span> Research to predict volcanic activity

Prediction of volcanic activity, or volcanic eruption forecasting, is an interdisciplinary monitoring and research effort to predict the time and severity of a volcano's eruption. Of particular importance is the prediction of hazardous eruptions that could lead to catastrophic loss of life, property, and disruption of human activities.

<span class="mw-page-title-main">Galán</span> Mountain in Argentina

Cerro Galán is a caldera in the Catamarca Province of Argentina. It is one of the largest exposed calderas in the world and forms part of the Central Volcanic Zone of the Andes, one of the three volcanic belts found in South America. One of several major caldera systems in the Central Volcanic Zone, the mountain is grouped into the Altiplano–Puna volcanic complex.

<span class="mw-page-title-main">Nazko Cone</span> Active volcano in British Columbia, Canada

Nazko Cone is a small potentially active basaltic cinder cone in central British Columbia, Canada, located 75 km west of Quesnel and 150 kilometers southwest of Prince George. It is considered the easternmost volcano in the Anahim Volcanic Belt. The small tree-covered cone rises 120 m above the Chilcotin-Nechako Plateau and rests on glacial till. It was formed in three episodes of activity, the first of which took place during the Pleistocene interglacial stage about 340,000 years ago. The second stage produced a large hyaloclastite scoria mound erupted beneath the Cordilleran Ice Sheet during the Pleistocene. Its last eruption produced two small lava flows that traveled 1 km to the west, along with a blanket of volcanic ash that extends several km to the north and east of the cone.

<span class="mw-page-title-main">Mount Tendürek</span> Shield volcano in eastern Turkey

Mount Tendürek is a shield volcano on the border of Ağrı and Van provinces in eastern Turkey, near the border with Iran. The volcano, which is mostly known for being near the supposed wreck site of Noah's Ark, is very large; its lava flows cover roughly 650 km2 (251 sq mi) across a swath of flat land. The mountain's two main features are the main summit crater Greater Tendürek, and a smaller crater known as Lesser Tendürek which lies to the east of the main crater. The slopes are very gentle and resemble a shield, after which the type is named. Mount Tendürek is known to have erupted viscous lava like that of volcanoes on the island of Hawaii.

The Anahim hotspot is a hypothesized hotspot in the Central Interior of British Columbia, Canada. It has been proposed as the candidate source for volcanism in the Anahim Volcanic Belt, a 300 kilometres long chain of volcanoes and other magmatic features that have undergone erosion. This chain extends from the community of Bella Bella in the west to near the small city of Quesnel in the east. While most volcanoes are created by geological activity at tectonic plate boundaries, the Anahim hotspot is located hundreds of kilometres away from the nearest plate boundary.

<span class="mw-page-title-main">Silverthrone Caldera</span> Caldera in British Columbia, Canada

The Silverthrone Caldera is a potentially active caldera complex in southwestern British Columbia, Canada, located over 350 kilometres (220 mi) northwest of the city of Vancouver and about 50 kilometres (31 mi) west of Mount Waddington in the Pacific Ranges of the Coast Mountains. The caldera is one of the largest of the few calderas in western Canada, measuring about 30 kilometres (19 mi) long (north-south) and 20 kilometres (12 mi) wide (east-west). Mount Silverthrone, an eroded lava dome on the caldera's northern flank that is 2,864 metres (9,396 ft) high, may be the highest volcano in Canada.

<span class="mw-page-title-main">Wells Gray-Clearwater volcanic field</span> Volcanic field in British Columbia, Canada

The Wells Gray-Clearwater volcanic field, also called the Clearwater Cone Group, is a potentially active monogenetic volcanic field in east-central British Columbia, Canada, located approximately 130 km (81 mi) north of Kamloops. It is situated in the Cariboo Mountains of the Columbia Mountains and on the Quesnel and Shuswap Highlands. As a monogenetic volcanic field, it is a place with numerous small basaltic volcanoes and extensive lava flows.

A series of small volcanic earthquakes measuring less than 4.0 on the Richter magnitude scale took place in the sparsely populated Nazko area of the Central Interior of British Columbia, Canada, from October 9, 2007, to June 12, 2008. They occurred just west of Nazko Cone, a small tree-covered cinder cone that last erupted about 7,200 years ago.

<span class="mw-page-title-main">2011–12 El Hierro eruption</span> Submarine volcanic eruption near the Canary Islands

The 2011–2012 El Hierro eruption occurred just off the island of El Hierro, the smallest and farthest south and west of the Canary Islands, in the Atlantic Ocean off the coast of Africa. The island is also the youngest in the volcanic chain. The October 2011 – March 2012 eruption was underwater, with a fissure of vents located approximately 2 kilometres to the south of the fishing village of La Restinga on the southern coast of the island. Increased seismicity in June 2012 to the north-west of the vent did not result in another phase of eruptive activity. Until the 2021 La Palma eruption, which started on 19 September 2021, this was the last volcanic eruption in Spain.

Volcano tectonics is a scientific field that uses the techniques and methods of structural geology, tectonics, and physics to analyse and interpret physical processes and the associated deformation in volcanic areas, at any scale.

Shahsavaran is a volcanic field in Iran. It covers an ellipse shaped area west of Bazman volcano. The field has erupted lava cones and lava flows, along with some explosive volcanic activity especially in the eastern part of the field. Volcanic rocks in the field are dominated by andesite, with subordinate basalt, dacite and rhyodacite. The volcanism has lasted from 12 million years ago to recent times, the 2010 Hosseinabad earthquake took place within the field but seems to be unrelated to volcanic activity.

<span class="mw-page-title-main">Geological deformation of Iceland</span>

The geological deformation of Iceland is the way that the rocks of the island of Iceland are changing due to tectonic forces. The geological deformation help to explain the location of earthquakes, volcanoes, fissures, and the shape of the island. Iceland is the largest landmass situated on an oceanic ridge. It is an elevated plateau of the sea floor, situated at the crossing of the Mid-Atlantic Ridge and the Greenland-Iceland-Scotland ridge. It lies along the oceanic divergent plate boundary of North American Plate and Eurasian Plate. The western part of Iceland sits on the North American Plate and the eastern part sits on the Eurasian Plate. The Reykjanes Ridge of the Mid-Atlantic ridge system in this region crosses the island from southwest and connects to the Kolbeinsey Ridge in the northeast.

Pica gap is a segment in the Central Volcanic Zone of Chile where volcanic activity is absent. It is named after the Altos de Pica region.

<span class="mw-page-title-main">Ticsani</span> Volcano in Peru

Ticsani is a volcano in Peru northwest of Moquegua and consists of two volcanoes that form a complex. "Old Ticsani" is a compound volcano that underwent a large collapse in the past and shed 15–30 cubic kilometres (3.6–7.2 cu mi) of mass down the Rio Tambo valley. Today an arcuate ridge remains of this edifice. "Modern Ticsani" is a complex of three lava domes which were emplaced during the Holocene. Two large eruptions took place during the Holocene, producing the so-called "Grey Ticsani" and "Brown Ticsani" deposits; the last eruption occurred after the 1600 eruption of neighbouring Huaynaputina. The volcano is seismically active and features active hot springs and fumaroles; since 2015 the volcano is monitored by the Peruvian government.

<span class="mw-page-title-main">Sector collapse</span> Collapse of a volcano

A sector collapse or lateral collapse is the structural failure and subsequent collapse of part of a volcano. Unlike a flank collapse, a sector collapse involves the central volcanic pipe. Sector collapses are one of the most hazardous volcanic events, often resulting in lateral blasts, landslides, and changes in volcanic eruptive behavior. Sector collapse can be caused by earthquakes, volcanic eruptions, gradual volcanic deformation, and other processes. Sector collapse events can occur on volcanoes present at both convergent and divergent plate boundaries. Sector collapses are generally very sudden; however, some attempts have been made to predict collapse events.

<span class="mw-page-title-main">Uturuncu</span> Stratovolcano in Bolivia

Uturuncu is a dormant volcano in the Sur Lípez Province of Bolivia. It is 6,008 metres (19,711 ft) high, has two summit peaks, and consists of a complex of lava domes and lava flows with a total volume estimated to be 50–85 km3. It bears traces of a former glaciation, even though it does not currently carry glaciers. Volcanic activity took place during the Pleistocene epoch and the last eruption was 250,000 years ago; since then Uturuncu has not erupted but active fumaroles occur in the summit region, between the two summits.

<span class="mw-page-title-main">Deformation (volcanology)</span> Change in the shape of a volcano or the land surrounding it

In volcanology, deformation is any change in the shape of a volcano or the land surrounding it. This can be in the form of inflation, which is a response to pressurization, or deflation, which is a response to depressurization. Inflation is represented by swelling of the ground surface, a volcanic edifice, or a subsurface magma body. It can be caused by magma accumulation, exsolution of volatiles, geothermal processes, heating, and tectonic compression. Deflation is represented by shrinking of the ground surface, a volcanic edifice, or a subsurface magma body. It can be caused by magma withdrawal, volatile escape, thermal contraction, phase changes during crystallization, and tectonic extension. Deformation is a key indicator of pre-eruptive unrest at many active volcanoes. The term bradyseism is used in the volcanological literature to mean the vertical ground movements associated with the Phlegraean Fields volcanic area west of Naples, Italy.

<span class="mw-page-title-main">Ōkataina Caldera</span> Volcanic caldera in New Zealand

Ōkataina Caldera is a volcanic caldera and its associated volcanoes located in Taupō Volcanic Zone of New Zealand's North Island. It has several actual or postulated sub calderas. The Ōkataina Caldera is just east of the smaller separate Rotorua Caldera and southwest of the much smaller Rotomā Embayment which is usually regarded as an associated volcano. It shows high rates of explosive rhyolitic volcanism although its last eruption was basaltic. The postulated Haroharo Caldera contained within it has sometimes been described in almost interchangeable terms with the Ōkataina Caldera or volcanic complex or centre and by other authors as a separate complex defined by gravitational and magnetic features.. Since 2010 other terms such as the Haroharo vent alignment, Utu Caldera, Matahina Caldera, Rotoiti Caldera and a postulated Kawerau Caldera are often used, rather than a Haroharo Caldera classification.

Magmatism along strike-slip faults is the process of rock melting, magma ascent and emplacement, associated with the tectonics and geometry of various strike-slip settings, most commonly occurring along transform boundaries at mid-ocean ridge spreading centres and at strike-slip systems parallel to oblique subduction zones. Strike-slip faults have a direct effect on magmatism. They can either induce magmatism, act as a conduit to magmatism and magmatic flow, or block magmatic flow. In contrast, magmatism can also directly impact on strike-slip faults by determining fault formation, propagation and slip. Both magma and strike-slip faults coexist and affect one another.

References

  1. Lahr, J. C.; Chouet, B. A.; Stephens, C. D.; Power, J. A.; Page, R. A. (1994). "Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions at Redoubt Volcano, Alaska" (PDF). Journal of Volcanology and Geothermal Research. 62 (1–4): 137–151. Bibcode:1994JVGR...62..137L. doi:10.1016/0377-0273(94)90031-0.
  2. 1 2 3 4 5 White, R; McCausland, W (2016). "Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions". Journal of Volcanology and Geothermal Research. 309: 139–155. Bibcode:2016JVGR..309..139W. doi: 10.1016/j.jvolgeores.2015.10.020 . ISSN   0377-0273.
  3. 1 2 Roman, D. C.; Cashman, K. V. (2006). "The origin of volcano-tectonic earthquake swarms". Geology . 34 (6): 457–460. Bibcode:2006Geo....34..457R. doi:10.1130/G22269.1.
  4. 1 2 Schmincke, H. U. (2004). Volcanism. doi:10.1007/978-3-642-18952-4. ISBN   978-3-642-62376-9.
  5. Eggert, S.; Walter, T.R. (2009). "Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance". Tectonophysics. 471 (1–2): 14–26. doi:10.1016/j.tecto.2008.10.003 . Retrieved 26 December 2023.
  6. Sigmundsson, F.; Parks, M.; Hooper, A.; Geirsson, H.; Vogfjörd, K.S.; Drouin, V.; Ófeigsson, B.G.; Hreinsdóttir, S.; Hjaltadóttir, S.; Jónsdóttir, K.; Einarsson, P. (2022). "Deformation and seismicity decline before the 2021 Fagradalsfjall eruption". Nature. 609 (7927): 523–528. doi: 10.1038/s41586-022-05083-4 . PMC   9477732 .
  7. Castro, J.; Dingwell, D. (2009). "Rapid ascent of rhyolitic magma at Chaitén volcano, Chile". Nature. 461: 780–783. doi:10.1038/nature08458.
  8. McNutt, S. R. (1996), "Seismic Monitoring and Eruption Forecasting of Volcanoes: A Review of the State-of-the-Art and Case Histories", in Scarpa, Roberto; Tilling, Robert I. (eds.), Monitoring and Mitigation of Volcano Hazards, Springer Berlin Heidelberg, pp. 99–146, doi:10.1007/978-3-642-80087-0_3, ISBN   9783642800870