Seismogram

Last updated
A seismogram being recorded by a seismograph at Weston Observatory in Massachusetts Seismogram at Weston Observatory.JPG
A seismogram being recorded by a seismograph at Weston Observatory in Massachusetts
A detail of the seismogram Seismogram on historical seismometer at Institute of Geophysis of the Czech Academy of Science (14).jpg
A detail of the seismogram

A seismogram is a graph output by a seismograph. It is a record of the ground motion at a measuring station as a function of time. Seismograms typically record motions in three cartesian axes (x, y, and z), with the z axis perpendicular to the Earth's surface and the x- and y- axes parallel to the surface. The energy measured in a seismogram may result from an earthquake or from some other source, such as an explosion. Seismograms can record many things, and record many little waves, called microseisms. These tiny microseisms can be caused by heavy traffic near the seismograph, waves hitting a beach, the wind, and any number of other ordinary things that cause some shaking of the seismograph.

Contents

A set of seismograms for an earthquake from the USGS (click to see large version) Usgs quake seis.png
A set of seismograms for an earthquake from the USGS (click to see large version)

Historically, seismograms were recorded on paper attached to rotating drums, a kind of chart recorder. Some used pens on ordinary paper, while others used light beams to expose photosensitive paper. Today, practically all seismograms are recorded digitally to make analysis by computer easier. [1] Some drum seismometers are still found, especially when used for public display. Seismograms are essential for finding the location and magnitude of earthquakes.

Recording

Prior to the availability of digital processing of seismic data in the late 1970s, the records were done in a few different forms on different types of media.

A Helicorder drum is a device used to record data into photographic paper or in the form of paper and ink. A piece of paper is wrapped around a rotating drum of the helicorder which receives the seismic signal from a seismometer. For each predefined interval of data, the helicorder will plot the seismic data in one line before moving to the next line at the next interval. The paper must be changed after the helicorder writes on the last line of the paper. In the model that use ink, regular maintenance of the pen must be done for accurate recording. [2]

A Develocorder is a machine that records multi-channel seismic data into a 16 mm film. The machine was developed by Teledyne Geotech during the mid-1960s. [3] It can automatically plot seismograms from 18 seismic signal sources and 3 time signals on a continuous reel of film. The signals from seismometers are processed by 15.5 Hz recording galvanometers [4] which record the seismograms to a reel of 200 feet (61 m) of film at the speeds between 3 and 20 centimetres (1.2 and 7.9 in) per minute. The machine has self-contained circulating chemicals that are used to automatically develop the film. [5] However, the machine takes at least ten minutes from the time of recording to the time that the film can be viewed. [3]

After the digital processing had been used, the archives of the seismograms were recorded on magnetic tapes. The data from the magnetic tapes can then be read back to reconstruct the original waveforms. Due to the deterioration of older magnetic tape medias, large number of waveforms from the archives in the early digital recording days are not recoverable. [6] Today, many other forms are used to digitally record the seismograms into digital medias. [1]

Reading

Seismograms are read from left to right.

Time marks show when the earthquake occurred. Time is shown by half-hour (thirty-minute) units. Each rotation of the seismograph drum is thirty minutes. Therefore, on seismograms, each line measures thirty minutes. This is a more efficient way to read a seismogram. Secondly, there are the minute-marks. A minute mark looks like a hyphen "-" between each minute. Minute marks count minutes on seismograms. From left to right, each mark stands for a minute.

Each seismic wave looks different. The P-wave is the first wave that is bigger than the other waves (the microseisms). Because P waves are the fastest seismic waves, they will usually be the first ones that the seismograph records. The next set of seismic waves on the seismogram will be the S-waves. These are usually bigger than the P waves, and have higher frequency. Look for a dramatic change in frequency for a different type of wave.

See also

Related Research Articles

<span class="mw-page-title-main">Seismology</span> Scientific study of earthquakes and propagation of elastic waves through a planet

Seismology is the scientific study of earthquakes and the generation and propagation of elastic waves through the Earth or other planetary bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic microseism, atmospheric, and artificial processes such as explosions and human activities. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of Earth motion as a function of time, created by a seismograph is called a seismogram. A seismologist is a scientist works in basic or applied seismology.

<span class="mw-page-title-main">Seismic wave</span> Seismic, volcanic, or explosive energy that travels through Earths layers

A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake, volcanic eruption, magma movement, a large landslide and a large man-made explosion that produces low-frequency acoustic energy. Seismic waves are studied by seismologists, who record the waves using seismometers, hydrophones, or accelerometers. Seismic waves are distinguished from seismic noise, which is persistent low-amplitude vibration arising from a variety of natural and anthropogenic sources.

<span class="mw-page-title-main">Epicenter</span> Point on the Earths surface that is directly above the hypocentre or focus in an earthquake

The epicenter, epicentre, or epicentrum in seismology is the point on the Earth's surface directly above a hypocenter or focus, the point where an earthquake or an underground explosion originates.

<span class="mw-page-title-main">Seismometer</span> Instrument that records seismic waves by measuring ground motions

A seismometer is an instrument that responds to ground noises and shaking such as caused by quakes, volcanic eruptions, and explosions. They are usually combined with a timing device and a recording device to form a seismograph. The output of such a device—formerly recorded on paper or film, now recorded and processed digitally—is a seismogram. Such data is used to locate and characterize earthquakes, and to study the internal structure of Earth.

Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth with seismic waves produced by earthquakes or explosions. P-, S-, and surface waves can be used for tomographic models of different resolutions based on seismic wavelength, wave source distance, and the seismograph array coverage. The data received at seismometers are used to solve an inverse problem, wherein the locations of reflection and refraction of the wave paths are determined. This solution can be used to create 3D images of velocity anomalies which may be interpreted as structural, thermal, or compositional variations. Geoscientists use these images to better understand core, mantle, and plate tectonic processes.

An accelerograph can be referred to as a strong-motion instrument or seismograph, or simply an earthquake accelerometer. They are usually constructed as a self-contained box, which previously included a paper or film recorder but now they often record directly on digital media and then the data is transmitted via the Internet.

<span class="mw-page-title-main">EarthScope</span> Earth science program exploring the structure of the North American continent

The EarthScope project was an National Science Foundation (NSF) funded earth science program that, from 2003-2018, used geological and geophysical techniques to explore the structure and evolution of the North American continent and to understand the processes controlling earthquakes and volcanoes. The project had three components: USArray, the Plate Boundary Observatory, and the San Andreas Fault Observatory at Depth. Organizations associated with the project included UNAVCO, the Incorporated Research Institutions for Seismology (IRIS), Stanford University, the United States Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Several international organizations also contributed to the initiative. EarthScope data are publicly accessible.

The receiver function technique is a way to image the structure of the Earth and its internal boundaries by using the information from teleseismic earthquakes recorded at a three-component seismograph.

In seismology, a microseism is defined as a faint earth tremor caused by natural phenomena. Sometimes referred to as a "hum", it should not be confused with the anomalous acoustic phenomenon of the same name. The term is most commonly used to refer to the dominant background seismic and electromagnetic noise signals on Earth, which are caused by water waves in the oceans and lakes. Characteristics of microseism are discussed by Bhatt. Because the ocean wave oscillations are statistically homogenous over several hours, the microseism signal is a long-continuing oscillation of the ground. The most energetic seismic waves that make up the microseismic field are Rayleigh waves, but Love waves can make up a significant fraction of the wave field, and body waves are also easily detected with arrays. Because the conversion from the ocean waves to the seismic waves is very weak, the amplitude of ground motions associated to microseisms does not generally exceed 10 micrometers.

The Richter scale, also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, is a measure of the strength of earthquakes, developed by Charles Francis Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". This was later revised and renamed the local magnitude scale, denoted as ML or ML .

Glacial earthquakes refer to a type of seismic event, with a magnitude of about 5, resulting from glacial calving events. The majority of glacial earthquake activity can be seen in the late summer and are found in Antarctica, Alaska, and Greenland. About 90% of these occur in Greenland. Glacial earthquakes occur most frequently in July, August, and September in Greenland. Seismographs are analyzed by scientists to identify and locate glacial earthquakes.

A synthetic seismogram is the result of forward modelling the seismic response of an input earth model, which is defined in terms of 1D, 2D or 3D variations in physical properties. In hydrocarbon exploration this is used to provide a 'tie' between changes in rock properties in a borehole and seismic reflection data at the same location. It can also be used either to test possible interpretation models for 2D and 3D seismic data or to model the response of the predicted geology as an aid to planning a seismic reflection survey. In the processing of wide-angle reflection and refraction (WARR) data, synthetic seismograms are used to further constrain the results of seismic tomography. In earthquake seismology, synthetic seismograms are used either to match the predicted effects of a particular earthquake source fault model with observed seismometer records or to help constrain the Earth's velocity structure. Synthetic seismograms are generated using specialized geophysical software.

An ocean-bottom seismometer (OBS) is a seismometer that is designed to record the earth motion under oceans and lakes from man-made sources and natural sources.

A seismic array is a system of linked seismometers arranged in a regular geometric pattern to increase sensitivity to earthquake and explosion detection. A seismic array differs from a local network of seismic stations mainly by the techniques used for data analysis. The data from a seismic array is obtained using special digital signal processing techniques such as beamforming, which suppress noises and thus enhance the signal-to-noise ratio (SNR).

<span class="mw-page-title-main">Ground motion</span>

Ground motion is the movement of the Earth’s surface from earthquakes or explosions. Ground motion is produced by seismic waves that are generated by sudden slip on a fault or sudden pressure at the explosive source and travel through the Earth and along its surface. This can be due to natural events, such as earthquakes and volcanic eruptions, or human activities, such as the detonation of nuclear weapons. There are two main types of seismic waves: body waves and surface waves. Body waves travel through the interior of the Earth, while surface waves travel along the Earth's surface. Ground motion is typically caused by surface waves, which are the most destructive type of seismic waves.

<span class="mw-page-title-main">Frank Rieber</span> American geophysicist (1891–1948)

Frank Rieber was a pioneering geophysicist, entrepreneur, inventor, and innovator, and made advances in a variety of fields. He is particularly remembered for his groundbreaking research in automated seismic data processing, decades before the industry performed similar research. His patents related to reproducible seismograms would lead to the ability to better locate petroleum, and gain widespread use and recognition by improving the fidelity of seismographs in accurately depicting underground rock strata and oil structures, particularly in areas with complex geological formations.

<span class="mw-page-title-main">MERMAID</span>

MERMAID is a marine scientific instrument platform, short for Mobile Earthquake Recorder for Marine Areas by Independent Divers.

The University of the West Indies Seismic Research Centre (UWI-SRC) is a centre for volcanological, seismic and geophysical research in Trinidad, which has the responsibility for monitoring and studying earthquakes, volcanoes and tsunamis across the Eastern Caribbean. Part of the University of the West Indies, it is also responsible for providing formal advice, and information, around the volcanic, seismic and tsunami hazards and events across the region, to reduce risk and protect lives and livelihoods. In recent years, UWI-SRC has managed ongoing volcanic unrest at the Soufriere Hills Volcano through the running of the Montserrat Volcano Observatory, and the 2020–2021 eruptions of La Soufrière on St Vincent.

<span class="mw-page-title-main">Wood–Anderson seismometer</span> Instrument fo measuring strength of earthquakes

The Wood–Anderson seismometer is a torsion seismometer developed in the United States by Harry O. Wood and John August Anderson in the 1920s to record local earthquakes in southern California. It photographically records the horizontal motion. The seismometer uses a pendulum of 0.8g, its period is 0.8 seconds, its magnification is 2,800 times, and its damping constant is 0.8. Charles Francis Richter developed the Richter magnitude scale using the Wood–Anderson seismometer.

Subsurface mapping by ambient noise tomography is the mapping underground geological structures under the assistance of seismic signals. Ambient noise, which is not associated with the earthquake, is the background seismic signals. Given that the ambient noises have low frequencies in general, the further classification of ambient noise include secondary microseisms, primary microseisms, and seismic hum, based on different range of frequencies. We can utilize the ambient noise data collected by seismometers to create images for the subsurface under the following processes. Since the ambient noise is considered as diffuse wavefield, we can correlate the filtered ambient noise data from a pair of seismic stations to find the velocities of seismic wavefields. A 2-dimensional or 3-dimensional velocity map, showing the spatial velocity difference of the subsurface, can thus be created for observing the geological structures. Subsurface mapping by ambient noise tomography can be applied in different fields, such as detecting the underground void space, monitoring landslides, and mapping the crustal and upper mantle structure.

References

  1. 1 2 Bolt, Bruce (August 2005), Earthquakes: 2006 Centennial Update – The 1906 Big One (Fifth ed.), W. H. Freeman and Company, p. 110, ISBN   978-0716775485
  2. "How to Read Helicorder Records". Maryland Geological Survey. Retrieved 4 July 2014.
  3. 1 2 O'Neil, W.; Medberry, A.H.; Sokolowski, T.J. (October 1990). NOAA Technical Memorandum NWS AR-41: Concurrent Seismic Data Acquisition and Processing Using a Single IBM PS/2 Computer (PDF) (Report). Retrieved 4 July 2014.
  4. Eaton, J. P. (18 April 1993). Review of Procedures for Calculating USGS Short-Period Seismograph system Response (Open-File Report 93-295) (PDF) (Report). U. S. Geological Survey. p. 16. Retrieved 4 July 2014.
  5. "Geotechnical Corp. Auto-Processing Film Recorder-Viewver". Photographic Science and Engineering. 4–5. Society of Photographic Scientists and Engineers: 365. 1960.
  6. Hutton, Kate; Yu, Ellen. "NEWS FLASH!! SCSN Earthquake Catalog Completed!!" (PDF). Seismological Laboratory, Caltech. Archived from the original (PDF) on 14 July 2014. Retrieved 4 July 2014.