Shadow zone

Last updated
Seismic shadow zone (from USGS) Earthquake wave shadow zone.svg
Seismic shadow zone (from USGS)

A seismic shadow zone is an area of the Earth's surface where seismographs cannot detect direct P waves and/or S waves from an earthquake. This is due to liquid layers or structures within the Earth's surface. The most recognized shadow zone is due to the core-mantle boundary where P waves are refracted and S waves are stopped at the liquid outer core; however, any liquid boundary or body can create a shadow zone. For example, magma reservoirs with a high enough percent melt can create seismic shadow zones.

Contents

Background

The earth is made up of different structures: the crust, the mantle, the inner core and the outer core. The crust, mantle, and inner core are typically solid; however, the outer core is entirely liquid. [1] A liquid outer core was first shown in 1906 by Geologist Richard Oldham. [2] Oldham observed seismograms from various earthquakes and saw that some seismic stations did not record direct S waves, particularly ones that were 120° away from the hypocenter of the earthquake. [3]

In 1913, Beno Gutenberg noticed the abrupt change in seismic velocities of the P waves and disappearance of S waves at the core-mantle boundary. Gutenberg attributed this due to a solid mantle and liquid outer core, calling it the Gutenberg discontinuity. [4]

Seismic wave properties

The main observational constraint on identifying liquid layers and/or structures within the earth come from seismology. When an earthquake occurs, seismic waves radiate out spherically from the earthquake's hypocenter. [5] Two types of body waves travel through the Earth: primary seismic waves (P waves) and secondary seismic waves (S waves). P waves travel with motion in the same direction as the wave propagates and S-waves travel with motion perpendicular to the wave propagation (transverse). [6]

The P waves are refracted by the liquid outer core of the Earth and are not detected between 104° and 140° (between approximately 11,570 and 15,570 km or 7,190 and 9,670 mi) from the hypocenter. [7] [8] This is due to Snell's law, where a seismic wave encounters a boundary and either refracts or reflects. In this case, the P waves refract due to density differences and greatly reduce in velocity. [7] [9] This is considered the P wave shadow zone. [10]

The S waves cannot pass through the liquid outer core and are not detected more than 104° (approximately 11,570 km or 7,190 mi) from the epicenter. [7] [11] [12] This is considered the S wave shadow zone. [10] However, P waves that travel refract through the outer core and refract to another P wave (PKP wave) on leaving the outer core can be detected within the shadow zone. Additionally, S waves that refract to P waves on entering the outer core and then refract to an S wave on leaving the outer core can also be detected in the shadow zone (SKS waves). [7] [13]

The reason for this is P wave and S wave velocities are governed by different properties in the material which they travel through and the different mathematical relationships they share in each case. The three properties are: The three properties are: incompressibility (), density () and rigidity (). [11] [14]

P wave velocity is equal to:

S wave velocity is equal to:

S wave velocity is entirely dependent on the rigidity of the material it travels through. Liquids have zero rigidity, making the S-wave velocity zero when traveling through a liquid. Overall, S waves are shear waves, and shear stress is a type of deformation that cannot occur in a liquid. [11] [12] [14] Conversely, P waves are compressional waves and are only partially dependent on rigidity. P waves still maintain some velocity (can be greatly reduced) when traveling through a liquid. [7] [8] [14] [15]

Other observations and implications

Although the core-mantle boundary casts the largest shadow zone, smaller structures, such as magma bodies, can also cast a shadow zone. For example, in 1981, Páll Einarsson conducted a seismic investigation on the Krafla Caldera in Northeast Iceland. [16] In this study, Einarsson placed a dense array of seismometers over the caldera and recorded earthquakes that occurred. The resulting seismograms showed both an absence of S waves and/or small S wave amplitudes. Einarsson attributed these results to be caused by a magma reservoir. In this case, the magma reservoir has enough percent melt to cause S waves to be directly affected. [16] In areas where there are no S waves being recorded, the S waves are encountering enough liquid, that no solid grains are touching. [17] In areas where there are highly attenuated (small aptitude) S waves, there is still a precent of melt, but enough solid grains are touching where S waves can travel through the part of the magma reservoir. [12] [15] [18]

Between 2014 and 2018, a geophysicist in Taiwan, Cheng-Horng Lin investigated the magma reservoir beneath the Tatun Volcanic Group in Taiwan. [19] [20] Lin's research group used deep earthquakes and seismometers on or near the Tatun Volcanic Group to identify changes P and S waveforms. Their results showed P wave delays and the absence of S waves in various locations. Lin attributed this finding to be due to a magma reservoir with at least 40% melt that casts an S wave shadow zone. [19] [20] However, a recent study done by National Chung Cheng University used a dense array of seismometers and only saw S wave attenuation associated with the magma reservoir. [21] This research study investigated the cause of the S wave shadow zone Lin observed and attributed it to either a magma diapir above the subducting Philippine Sea Plate. Though it was not a magma reservoir, there was still a structure with enough melt/liquid to cause an S wave shadow zone. [21]

The existence of shadow zones, more specifically S wave shadow zones, could have implications on the eruptibility of volcanoes throughout the world. When volcanoes have enough percent melt to go below the rheological lockup (percent crystal fraction when a volcano is eruptive or not eruptive), this makes the volcanoes eruptible. [22] [23] Determining the percent melt of a volcano could help with predictive modeling and assess current and future hazards. In an actively erupting volcano, Mt. Etna in Italy, a study was done in 2021 that showed both an absence of S-waves in some regions and highly attenuated S-waves in others, depending on where the receivers are located above the magma chamber. [24] Previously, in 2014, a study was done to model the mechanism leading to the December 28th, 2014 eruption. This study showed that an eruption could be triggered between 30-70% melt. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Seismology</span> Scientific study of earthquakes and propagation of elastic waves through a planet

Seismology is the scientific study of earthquakes and the generation and propagation of elastic waves through the Earth or other planetary bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic microseism, atmospheric, and artificial processes such as explosions and human activities. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of Earth motion as a function of time, created by a seismograph is called a seismogram. A seismologist is a scientist working in basic or applied seismology.

<span class="mw-page-title-main">Seismic wave</span> Seismic, volcanic, or explosive energy that travels through Earths layers

A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake, volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic energy. Seismic waves are studied by seismologists, who record the waves using seismometers, hydrophones, or accelerometers. Seismic waves are distinguished from seismic noise, which is persistent low-amplitude vibration arising from a variety of natural and anthropogenic sources.

<span class="mw-page-title-main">Epicenter</span> Point on the Earths surface that is directly above the hypocentre or focus in an earthquake

The epicenter, epicentre, or epicentrum in seismology is the point on the Earth's surface directly above a hypocenter or focus, the point where an earthquake or an underground explosion originates.

<span class="mw-page-title-main">Mohorovičić discontinuity</span> Boundary between the Earths crust and the mantle

The Mohorovičić discontinuity – usually called the Moho discontinuity, Moho boundary, or just Moho – is the boundary between the crust and the mantle of Earth. It is defined by the distinct change in velocity of seismic waves as they pass through changing densities of rock.

<span class="mw-page-title-main">Mantle plume</span> Upwelling of abnormally hot rock within Earths mantle

A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots, such as Hawaii or Iceland, and large igneous provinces such as the Deccan and Siberian Traps. Some such volcanic regions lie far from tectonic plate boundaries, while others represent unusually large-volume volcanism near plate boundaries.

Seismic tomography is a technique for imaging the subsurface of the Earth with seismic waves produced by earthquakes or explosions. P-, S-, and surface waves can be used for tomographic models of different resolutions based on seismic wavelength, wave source distance, and the seismograph array coverage. The data received at seismometers are used to solve an inverse problem, wherein the locations of reflection and refraction of the wave paths are determined. This solution can be used to create 3D images of velocity anomalies which may be interpreted as structural, thermal, or compositional variations. Geoscientists use these images to better understand core, mantle, and plate tectonic processes.

<span class="mw-page-title-main">P wave</span> Type of seismic wave

A P wave is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any affected location or at a seismograph. P waves may be transmitted through gases, liquids, or solids.

<span class="mw-page-title-main">Internal structure of Earth</span> Inner structure of planet Earth, consisting of several concentric spherical layers

The internal structure of Earth is the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere and solid mantle, a liquid outer core whose flow generates the Earth's magnetic field, and a solid inner core.

<span class="mw-page-title-main">Core–mantle boundary</span> Discontinuity where the bottom of the planets mantle meets the outer layer of the core

The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic perovskite mineralogy of the deep mantle named post-perovskite. Seismic tomography studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific Large Low-Shear-Velocity Provinces (LLSVP).

The Gutenberg discontinuity occurs within Earth's interior at a depth of about 2,900 km (1,800 mi) below the surface, where there is an abrupt change in the seismic waves that travel through Earth. At this depth, primary seismic waves decrease in velocity while secondary seismic waves disappear completely. S waves shear material, and cannot transmit through liquids, so it is believed that the unit above the discontinuity is solid, while the unit below is in a liquid, or molten, form. This distinct change marks the boundary between two sections of the earth's interior, known as the lower mantle and the underlying outer core . This discontinuity is also called the Wrichert-Gutenberg discontinuity. The molten section of the outer core is thought to be about 700 °C (1,292 °F) hotter than the overlying mantle. It is also denser, probably due to a greater percentage of iron. This distinct boundary between the core and the mantle, which was discovered by the change in seismic waves at this depth, is often referred to as the core–mantle boundary, or the CMB. It is a narrow, uneven zone, and contains undulations that may be up to 5–8 km (3–5 mi) wide. These undulations are affected by the heat-driven convection activity within the overlying mantle, which may be the driving force of plate tectonics-motion of sections of Earth's brittle exterior. These undulations in the core–mantle boundary are also affected by the underlying eddies and currents within the outer core's iron-rich fluids, which are ultimately responsible for Earth's magnetic field.

<span class="mw-page-title-main">Earth's inner core</span> Innermost part of Earth, a solid ball of iron-nickel alloy

Earth's inner core is the innermost geologic layer of planet Earth. It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 20% of Earth radius or 70% of the Moon's radius.

<span class="mw-page-title-main">Geophysical imaging</span>

Geophysical imaging is a minimally destructive geophysical technique that investigates the subsurface of a terrestrial planet. Geophysical imaging is a noninvasive imaging technique with a high parametrical and spatio-temporal resolution. Geophysical imaging has evolved over the last 30 years due to advances in computing power and speed. It can be used to model a surface or object understudy in 2D or 3D as well as monitor changes.

The Anahim hotspot is a hypothesized hotspot in the Central Interior of British Columbia, Canada. It has been proposed as the candidate source for volcanism in the Anahim Volcanic Belt, a 300 kilometres long chain of volcanoes and other magmatic features that have undergone erosion. This chain extends from the community of Bella Bella in the west to near the small city of Quesnel in the east. While most volcanoes are created by geological activity at tectonic plate boundaries, the Anahim hotspot is located hundreds of kilometres away from the nearest plate boundary.

Shear wave splitting, also called seismic birefringence, is the phenomenon that occurs when a polarized shear wave enters an anisotropic medium. The incident shear wave splits into two polarized shear waves. Shear wave splitting is typically used as a tool for testing the anisotropy of an area of interest. These measurements reflect the degree of anisotropy and lead to a better understanding of the area's crack density and orientation or crystal alignment. We can think of the anisotropy of a particular area as a black box and the shear wave splitting measurements as a way of looking at what is in the box.

<span class="mw-page-title-main">Mantle wedge</span> Triangular shaped piece of mantle that lies above a subducting tectonic plate

A mantle wedge is a triangular shaped piece of mantle that lies above a subducting tectonic plate and below the overriding plate. This piece of mantle can be identified using seismic velocity imaging as well as earthquake maps. Subducting oceanic slabs carry large amounts of water; this water lowers the melting temperature of the above mantle wedge. Melting of the mantle wedge can also be contributed to depressurization due to the flow in the wedge. This melt gives rise to associated volcanism on the earth's surface. This volcanism can be seen around the world in places such as Japan and Indonesia.

Ultra low velocity zones (ULVZs) are patches on the core-mantle boundary that have extremely low seismic velocities. The zones are mapped to be hundreds of kilometers in diameter and tens of kilometers thick. Their shear wave velocities can be up to 30% lower than surrounding material. The composition and origin of the zones remain uncertain. The zones appear to correlate with edges of the African and Pacific large low-shear-velocity provinces (LLSVPs) as well as the location of hotspots.

<span class="mw-page-title-main">Inner core super-rotation</span> Concept in geodynamics

Inner core super-rotation is the eastward rotation of the inner core of Earth relative to its mantle, for a net rotation rate that is usually faster than Earth as a whole. A 1995 model of Earth's dynamo predicted super-rotations of up to 3 degrees per year; the following year, this prediction was supported by observed discrepancies in the time that p-waves take to travel through the inner and outer core.

The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust and ends at the top of the lower mantle at 670 km (420 mi). Temperatures range from approximately 500 K at the upper boundary with the crust to approximately 1,200 K at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5 to 10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending upon depth.

Intraplate volcanism is volcanism that takes place away from the margins of tectonic plates. Most volcanic activity takes place on plate margins, and there is broad consensus among geologists that this activity is explained well by the theory of plate tectonics. However, the origins of volcanic activity within plates remains controversial.

<span class="mw-page-title-main">Seismic velocity structure</span> Seismic wave velocity variation

Seismic velocity structure is the distribution and variation of seismic wave speeds within Earth's and other planetary bodies' subsurface. It is reflective of subsurface properties such as material composition, density, porosity, and temperature. Geophysicists rely on the analysis and interpretation of the velocity structure to develop refined models of the subsurface geology, which are essential in resource exploration, earthquake seismology, and advancing our understanding of Earth's geological development.

References

  1. Encyclopedia of solid earth geophysics. Harsh K. Gupta. Dordrecht: Springer. 2011. ISBN   978-90-481-8702-7. OCLC   745002805.{{cite book}}: CS1 maint: others (link)
  2. Bragg, William (1936-12-18). "Tribute to Deceased Fellows of the Royal Society". Science. 84 (2190): 539–546. doi:10.1126/science.84.2190.539. ISSN   0036-8075. PMID   17834950.
  3. Brush, Stephen G. (September 1980). "Discovery of the Earth's core". American Journal of Physics. 48 (9): 705–724. doi:10.1119/1.12026. ISSN   0002-9505.
  4. Michael Allaby (2008). A dictionary of earth sciences (3rd ed.). Oxford. ISBN   978-0-19-921194-4. OCLC   177509121.{{cite book}}: CS1 maint: location missing publisher (link)
  5. "Earthquake Glossary". earthquake.usgs.gov. Retrieved 2021-12-10.
  6. Fowler, C. M. R. (2005). The solid earth: an introduction to global geophysics (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN   0-521-89307-0. OCLC   53325178.
  7. 1 2 3 4 5 "CHAPTER 19 NOTES Earth's (Interior)". uh.edu. Retrieved 2021-12-10.
  8. 1 2 "Earthquake Glossary". earthquake.usgs.gov. Retrieved 2021-12-10.
  9. "Snell's Law -- The Law of Refraction". personal.math.ubc.ca. Retrieved 2021-12-10.
  10. 1 2 "Seismic Shadow Zone: Basic Introduction- Incorporated Research Institutions for Seismology". www.iris.edu. Retrieved 2021-12-10.
  11. 1 2 3 "Why can't S-waves travel through liquids?". Earth Observatory of Singapore. Retrieved 2021-12-10.
  12. 1 2 3 Greenwood, Margaret Stautberg; Bamberger, Judith Ann (August 2002). "Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control". Ultrasonics. 39 (9): 623–630. doi:10.1016/S0041-624X(02)00372-4. PMID   12206629.
  13. Kennett, Brian (2007), "Seismic Phases", in Gubbins, David; Herrero-Bervera, Emilio (eds.), Encyclopedia of Geomagnetism and Paleomagnetism, Dordrecht: Springer Netherlands, pp. 903–908, doi:10.1007/978-1-4020-4423-6_290, ISBN   978-1-4020-4423-6 , retrieved 2021-12-10
  14. 1 2 3 Dziewonski, Adam M.; Anderson, Don L. (June 1981). "Preliminary reference Earth model". Physics of the Earth and Planetary Interiors. 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7.
  15. 1 2 Båth, Markus (1957). "Shadow zones, travel times, and energies of longitudinal seismic waves in the presence of an asthenosphere low-velocity layer". Eos, Transactions American Geophysical Union. 38 (4): 529–538. doi:10.1029/TR038i004p00529. ISSN   2324-9250.
  16. 1 2 Einarsson, P. (September 1978). "S-wave shadows in the Krafla Caldera in NE-Iceland, evidence for a magma chamber in the crust". Bulletin Volcanologique. 41 (3): 187–195. doi:10.1007/bf02597222. hdl: 20.500.11815/4200 . ISSN   0258-8900. S2CID   128433156.
  17. Asimow, Paul D. (2016), "Partial Melting", in White, William M. (ed.), Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth, Encyclopedia of Earth Sciences Series, Cham: Springer International Publishing, pp. 1–6, doi:10.1007/978-3-319-39193-9_218-1, ISBN   978-3-319-39193-9 , retrieved 2021-12-10
  18. Sheriff, R. E. (1975). "Factors Affecting Seismic Amplitudes*". Geophysical Prospecting. 23 (1): 125–138. doi:10.1111/j.1365-2478.1975.tb00685.x. ISSN   1365-2478.
  19. 1 2 Lin, Cheng-Horng (2016-12-23). "Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays". Scientific Reports. 6 (1): 39500. doi: 10.1038/srep39500 . ISSN   2045-2322. PMC   5180088 . PMID   28008931. S2CID   968378.
  20. 1 2 Lin, Cheng-Horng; Lai, Ya-Chuan; Shih, Min-Hung; Pu, Hsin-Chieh; Lee, Shiann-Jong (2018-11-06). "Seismic Detection of a Magma Reservoir beneath Turtle Island of Taiwan by S-Wave Shadows and Reflections". Scientific Reports. 8 (1): 16401. doi: 10.1038/s41598-018-34596-0 . ISSN   2045-2322. PMC   6219605 . PMID   30401817. S2CID   53228649.
  21. 1 2 Yeh, Yu-Lien; Wang, Wei-Hau; Wen, Strong (2021-01-13). "Dense seismic arrays deny a massive magma chamber beneath the Taipei metropolis, Taiwan". Scientific Reports. 11 (1): 1083. doi:10.1038/s41598-020-80051-4. ISSN   2045-2322. PMC   7806728 . PMID   33441717.
  22. Cooper, Kari M.; Kent, Adam J. R. (2014-02-16). "Rapid remobilization of magmatic crystals kept in cold storage". Nature. 506 (7489): 480–483. doi:10.1038/nature12991. ISSN   0028-0836. PMID   24531766. S2CID   4450434.
  23. Marsh, B. D. (October 1981). "On the crystallinity, probability of occurrence, and rheology of lava and magma". Contributions to Mineralogy and Petrology. 78 (1): 85–98. doi:10.1007/bf00371146. ISSN   0010-7999. S2CID   73583798.
  24. De Gori, Pasquale; Giampiccolo, Elisabetta; Cocina, Ornella; Branca, Stefano; Doglioni, Carlo; Chiarabba, Claudio (2021-10-12). "Re-pressurized magma at Mt. Etna, Italy, may feed eruptions for years". Communications Earth & Environment. 2 (1): 1–9. doi: 10.1038/s43247-021-00282-9 . ISSN   2662-4435. S2CID   238586951.
  25. Ferlito, C.; Bruno, V.; Salerno, G.; Caltabiano, T.; Scandura, D.; Mattia, M.; Coltorti, M. (2017-07-13). "Dome-like behaviour at Mt. Etna: The case of the 28 December 2014 South East Crater paroxysm". Scientific Reports. 7 (1): 5361. doi: 10.1038/s41598-017-05318-9 . ISSN   2045-2322. PMC   5509668 . PMID   28706233. S2CID   10170141.