Geogrid

Last updated
Geogrids1.jpg
Geogrids are used to prevent sliding on long and steep slopes during installation and use of a landfill capping system. Geogrid on a slope.jpg
Geogrids are used to prevent sliding on long and steep slopes during installation and use of a landfill capping system.

A geogrid is geosynthetic material used to reinforce soils and similar materials. Soils pull apart under tension. Compared to soil, geogrids are strong in tension. This fact allows them to transfer forces to a larger area of soil than would otherwise be the case.[ citation needed ]

Geogrids are commonly made of polymer materials, such as polyester, polyvinyl alcohol, polyethylene or polypropylene. They may be woven or knitted from yarns, heat-welded from strips of material, or produced by punching a regular pattern of holes in sheets of material, then stretched into a grid.

The development of methods of preparing relatively rigid polymeric materials by tensile drawing, [2] in a sense "cold working," raised the possibility that such materials could be used in the reinforcement of soils for walls, steep slopes, roadway bases and foundation soils. The principal function of geogrids is for reinforcement. This area, as with many other geosynthetics, is very active, with a number of different products, materials, configurations, etc., making up today's geogrid market. The key feature of all geogrids is that the openings between the adjacent sets of longitudinal and transverse ribs, called “apertures,” are large enough to allow for soil strike-through from one side of the geogrid to the other. The ribs of some geogrids are often quite stiff compared to the fibers of geotextiles. As discussed later, not only is rib strength important, but junction strength is also important. The reason for this is that in anchorage situations the soil strike-through within the apertures bears against the transverse ribs, which transmits the load to the longitudinal ribs via the junctions. The junctions are, of course, where the longitudinal and transverse ribs meet and are connected. They are sometimes called “nodes”.

Currently there are three categories of geogrids. The first, and original, geogrids (called unitized or homogeneous types, or more commonly referred to as 'punched and drawn geogrids') were invented by Dr Frank Brian Mercer [3] in the United Kingdom at Netlon, Ltd., and were brought in 1982 to North America by the Tensar Corporation. A conference in 1984 was helpful in bringing geogrids to the engineering design community. [4] A similar type of drawn geogrid which originated in Italy by Tenax is also available, as are products by new manufacturers in Asia.

The second category of geogrids are more flexible, textile-like geogrids using bundles of polyethylene-coated polyester fibres as the reinforcing component. They were first developed by ICI Linear Composites LTD in the United Kingdom around 1980. This led to the development of polyester yarn geogrids made on textile weaving machinery. In this process hundreds of continuous fibers are gathered together to form yarns which are woven into longitudinal and transverse ribs with large open spaces between. The cross-overs are joined by knitting or intertwining before the entire unit is protected by a subsequent coating. Bitumen, latex, or PVC are the usual coating materials. Geosynthetics within this group are manufactured by many companies having various trademarked products. There are possibly as many as 25 companies manufacturing coated yarn-type polyester geogrids on a worldwide basis.

The third category of geogrids are made by laser or ultrasonically bonding together polyester or polypropylene rods or straps in a gridlike pattern. Two manufacturers currently make such geogrids.

The geogrid sector is extremely active not only in manufacturing new products, but also in providing significant technical information to aid the design engineer.

Ecological balance

Usually retaining walls are constructed of reinforced concrete, if an impermeable surface is not desired, it would be a sensible solution to create a filling area (but not for dam constructions). Choosing the ground reinforced with geogrid reinforcements instead of reinforced concrete retaining wall will also contribute to the ecological balance. While reinforced concrete wall surfaces cannot be vegetated, the surfaces of filled areas reinforced with geogrid reinforcements can be vegetated [5] .

Related Research Articles

Masonry Building of structures from individual units of stone, brick, or block

Masonry is the building of structures from individual units, which are often laid in and bound together by mortar; the term masonry can also refer to the units themselves. The common materials of masonry construction are brick, building stone such as marble, granite, and limestone, cast stone, concrete block, glass block, and adobe. Masonry is generally a highly durable form of construction. However, the materials used, the quality of the mortar and workmanship, and the pattern in which the units are assembled can substantially affect the durability of the overall masonry construction. A person who constructs masonry is called a mason or bricklayer. These are both classified as construction trades.

Polypropylene Thermoplastic polymer

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

Geosynthetics Synthetic material used to stabilize terrain

Geosynthetics are synthetic products used to stabilize terrain. They are generally polymeric products used to solve civil engineering problems. This includes eight main product categories: geotextiles, geogrids, geonets, geomembranes, geosynthetic clay liners, geofoam, geocells and geocomposites. The polymeric nature of the products makes them suitable for use in the ground where high levels of durability are required. They can also be used in exposed applications. Geosynthetics are available in a wide range of forms and materials. These products have a wide range of applications and are currently used in many civil, geotechnical, transportation, geoenvironmental, hydraulic, and private development applications including roads, airfields, railroads, embankments, retaining structures, reservoirs, canals, dams, erosion control, sediment control, landfill liners, landfill covers, mining, aquaculture and agriculture.

Strapping, also known as bundling and banding, is the process of applying a strap to an item to combine, stabilize, hold, reinforce, or fasten it. The strap may also be referred to as strapping. Strapping is most commonly used in the packaging industry.

Geotextile Textile material used in ground stabilization and construction

Geotextiles are permeable fabrics which, when used in association with soil, have the ability to separate, filter, reinforce, protect, or drain. Typically made from polypropylene or polyester, geotextile fabrics come in three basic forms: woven, needle punched, or heat bonded.

Rotational molding involves a heated hollow mold which is filled with a charge or shot weight of material

Rotational molding involves a heated hollow mold which is filled with a charge or shot weight of material. It is then slowly rotated, causing the softened material to disperse and stick to the walls of the mold. In order to maintain even thickness throughout the part, the mold continues to rotate at all times during the heating phase and to avoid sagging or deformation also during the cooling phase. The process was applied to plastics in the 1950s but in the early years was little used because it was a slow process restricted to a small number of plastics. Over time, improvements in process control and developments with plastic powders have resulted in increased use.

Polyester Category of polymers, in which the monomers are joined together by ester links.

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Nonwoven fabric

Nonwoven fabric is a fabric-like material made from staple fibre (short) and long fibres, bonded together by chemical, mechanical, heat or solvent treatment. The term is used in the textile manufacturing industry to denote fabrics, such as felt, which are neither woven nor knitted. Some non-woven materials lack sufficient strength unless densified or reinforced by a backing. In recent years, non-wovens have become an alternative to polyurethane foam.

Geocomposite

Geocomposite is a composition / combination of two or more geosynthetic materials to perform multiple number of geosynthetic functions for specific civil engineering application(s) the purpose of providing this composition is to minimize the application costs whereas the technical properties of the soil or the geotechnical structure are enhanced.

Olefin fiber is a synthetic fiber made from a polyolefin, such as polypropylene or polyethylene. It is used in wallpaper, carpeting, ropes, and vehicle interiors.

A geomembrane is very low permeability synthetic membrane liner or barrier used with any geotechnical engineering related material so as to control fluid migration in a human-made project, structure, or system. Geomembranes are made from relatively thin continuous polymeric sheets, but they can also be made from the impregnation of geotextiles with asphalt, elastomer or polymer sprays, or as multilayered bitumen geocomposites. Continuous polymer sheet geomembranes are, by far, the most common.

Fiber-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.

A technical textile is a textile product manufactured for non-aesthetic purposes, where function is the primary criterion. Technical textiles include textiles for automotive applications, medical textiles, geotextiles, agrotextiles, and protective clothing.

Mechanically stabilized earth Soil constructed with artificial reinforcing

Mechanically stabilized earth is soil constructed with artificial reinforcing. It can be used for retaining walls, bridge abutments, seawalls, and dikes. Although the basic principles of MSE have been used throughout history, MSE was developed in its current form in the 1960s. The reinforcing elements used can vary but include steel and geosynthetics.

A fabric structure is a structure made of fabric, with or without a structural frame. The technology provides end users a variety of aesthetic free-form building designs. Custom-made structures are engineered and fabricated to meet worldwide structural, flame retardant, weather-resistant, and natural force requirements. Fabric structures are considered a sub-category of tensile structure.

Cellular confinement Confinement system used in construction and geotechnical engineering

Cellular confinement systems (CCS)—also known as geocells—are widely used in construction for erosion control, soil stabilization on flat ground and steep slopes, channel protection, and structural reinforcement for load support and earth retention. Typical cellular confinement systems are geosynthetics made with ultrasonically welded high-density polyethylene (HDPE) strips or novel polymeric alloy (NPA)—and expanded on-site to form a honeycomb-like structure—and filled with sand, soil, rock, gravel or concrete.

A geonet is a geosynthetic material similar in structure to a geogrid, consisting of integrally connected parallel sets of ribs overlying similar sets at various angles for in-plane drainage of liquids or gases. Geonets are often laminated with geotextiles on one or both surfaces and are then referred to as drainage geocomposites. They are competitive with other drainage geocomposites having different core configurations.

Textile-reinforced concrete

Textile-reinforced concrete is a type of reinforced concrete in which the usual steel reinforcing bars are replaced by textile materials. Instead of using a metal cage inside the concrete, this technique uses a fabric cage inside the same.

Novel polymeric alloy (NPA) is a polymeric alloy composed of polyolefin and thermoplastic engineering polymer with enhanced engineering properties. NPA was developed for use in geosynthetics. One of the first commercial NPA applications was in the manufacturer of polymeric strips used to form Neoloy® cellular confinement systems (geocells).

References

  1. Müller, W. W.; Saathoff, F. (2015). "Geosynthetics in geoenvironmental engineering". Science and Technology of Advanced Materials. 16 (3): 034605. Bibcode:2015STAdM..16c4605M. doi:10.1088/1468-6996/16/3/034605. PMC   5099829 . PMID   27877792.
  2. Capaccio, G.; Ward, I. M. (1973). "Properties of Ultra-high Modulus Linear Polyethylenes". Nature Physical Science. 243 (130): 143. Bibcode:1973NPhS..243..143C. doi: 10.1038/physci243143a0 .
  3. Mercer, F.B. (1987) "Critical Aspects of Industrial and Academic Collaboration," The Philips Lecture, The Royal Society.
  4. Ward, I. M. (1984) “The Orientation of Polymers to Produce High Performance Materials” Proceedings of the Symposium on Polymer Grid Reinforcement in Civil Engineering, Institution of Civil Engineers, UK.
  5. Kırmızı, M. (2020). Stability of filling areas: example of The Çamlica mosque (Doctoral thesis, Istanbul Aydın University, Turkey).