Bioclogging

Last updated

Bioclogging or biological clogging refers to the blockage of pore space in soil by microbial biomass, including active cells and their byproducts such as extracellular polymeric substance (EPS). The microbial biomass obstructs pore spaces, creating an impermeable layer in the soil and significantly reducing water infiltration rates.

Contents

Bioclogging occurs under continuous ponded infiltration at various field conditions such as artificial recharge ponds, percolation trenches, irrigation channels, sewage treatment systems, constructed wetlands, landfill liners and natural systems such as riverbeds and soils. It also affects groundwater flow in the aquifer, such as ground source heat pumps, permeable reactive barriers, and microbial enhanced oil recovery. Bioclogging is a significant problem where water infiltration is hampered and countermeasures such as regular drying of the system can reduce the levels of bioclogging. However, bioclogging can also serve beneficial purposes in specific conditions. For instance, bioclogging can be utilized to make an impermeable layer to minimize the rate of infiltration or to enhance soil mechanic properties.

General description

Change in permeability with time

Bioclogging is observed as the decrease in the infiltration rate. A decrease in the infiltration rate under ponded infiltration was observed in the 1940s for studying the infiltration of artificial recharge ponds and the water-spreading on agricultural soils. Allison described [1] that when soils are continuously submerged, permeability or saturated hydraulic conductivity changes in 3 key stages:

  1. After initiating field or laboratory tests, the permeability decreases to a minimum. On highly permeable soils this initial decrease is small, or nonexistent, but for relatively impermeable soils, permeability decreases for 10 to 20 days possibly due to physical changes in the structure of the soil.
  2. Permeability increases due to dissolving the entrapped air in soil into the percolating water.
  3. Permeability decreases for 2 to 4 weeks due to the disintegration of aggregates and biological clogging of soil pores with microbial cells and their synthesized products, slimes, or polysaccharides.

This description is based on experiments conducted at that time, and the actual process of bioclogging depends on system conditions, such as nutrient and electron acceptor availability, microbial biofilm formation propensity, initial conditions, etc. In particular, the 3 stages are not necessarily distinct in every field condition of bioclogging; when the second stage is not clear, and permeability just continues to decrease.

Various types of bioclogging

The change in permeability with time is dependent on the field condition and there are various causes for the change in the hydraulic conductivity, [2] including physical (suspended solids, disintegration of aggregate structure, etc), chemical (dispersion and swelling of clay particles), and biological causes (as listed below). Usually bioclogging means the first of the following, while bioclogging in a broader sense means all of the following.

  1. Bioclogging by microbial cell bodies (such as bacteria, [3] [4] [5] [6] algae [7] and fungus [8] [9] ) and their synthesized byproducts such as extracellular polymeric substance (EPS) [10] (also referred to as slime), which form biofilm [11] [12] [13] or microcolony aggregation [14] on soil particles are direct biological causes of the decrease in hydraulic conductivity.
  2. Entrapment of gas bubbles such as methane [15] produced by methane-producing microorganisms clog the soil pore and contributes to decreasing hydraulic conductivity. As gas is also microbial byproduct, it can also be considered to be bioclogging.
  3. Iron bacteria stimulate ferric oxyhydroxide deposition which may cause clogging of soil pores. [16] This is an indirect biological cause of the decrease in hydraulic conductivity.

Bioclogging is mostly observed in saturated conditions, but bioclogging in unsaturated conditions is also studied. [17]

Field observation

Field problem and countermeasures

Bioclogging is a significant issue in various environmental and artificial water systems. Here are some specific field problems related to bioclogging and their potential countermeasures.

  1. Bioclogging commonly occurs during continuous ponded infiltration in such places as artificial recharge ponds [18] and percolation trenches. [19] Reduction of infiltration rate due to bioclogging at the infiltrating surface reduces the efficiency of such systems. To minimize the bioclogging effects, pretreatment of the water to reduce suspended solids, nutrients, and organic carbon might be necessary. Regular drying and physical removal of the clogging layer can be an effective countermeasure.
  2. Similarly, septic drain fields are prone to bioclogging primarily due to the continuous flow of nutrient-rich wastewater. [20] [21] The organic material causing bioclogging in the septic tank is sometimes called biomat. [22] Pretreatment of water by filtration or reducing the load of the system could delay the failure of the system by bioclogging. Slow sand filter system also suffers from bioclogging. [23] Besides the countermeasures mentioned above, cleaning or backwashing sand may be operated to remove biofilm and recover the permeability of sand.
  3. In river systems, bioclogging can significantly impact aquifer recharge, particularly in dry regions where losing rivers are prevalent. [24] As a result of bioclogging, the connection between surface water and groundwater in riverine systems is affected. The development of a biofilm-induced clogging layer can lead to disconnection, changing the natural water flow patterns between rivers and aquifers. [25]
  4. Bioclogging is also a concern in aquifers, particularly when water is extracted through water wells below the groundwater table. [26] Over months and years of continued operation of water wells, they may show a gradual reduction in performance due to bioclogging or other clogging mechanisms. [27] Bioclogging may also affect the sustainable operation of ground source heat pumps. [28] Common approaches to treating bioclogging include utilizing phosphate, a critical nutrient for iron-bacteria biofilms, and employing chlorine and fungicides to address bacterial issues. Backwashing is a common method to deal with clogging in general, including bioclogging. [28]

Benefits

In certain environments, bioclogging positively influences hydrological process. Here are some examples.

  1. Bioclogging plays a crucial role in sealing the bottoms of stabilization ponds for dairy farm wastewater treatment. [29] Similarly, irrigation channels for seepage control may be inoculated with algae and bacteria to promote bioclogging for reducing water loss. [30]
  2. Turning to landfill liners, such as compacted clay liners, bioclogging emerges as a beneficial factor. Clay liners are usually used in landfill to minimize pollution from landfill leachate to the surrounding soil environment. The hydraulic conductivity of clay liners becomes lower than the original value due to bioclogging, which is caused by microorganism in the leachate and the pore spaces in the clay. [31] [32]
  3. Bioclogging is a common occurrence in constructed wetlands [33] which are engineered for treating various contaminated waters. Notably, in wetlands with subsurface horizontal flow, preferential flow paths avoiding the clogged part can improve the system treatment efficiency. [34]
  4. Biofilm formation plays a crucial role in bioremediation, [35] particularly in treating biodegradable groundwater pollution. A permeable reactive barrier [36] is formed to contain the groundwater flow by bioclogging and also to degrade pollution by microbes. [37] Contaminant flow should be carefully analyzed because a preferential flow path in the barrier may reduce the efficiency of the remediation. [38]
  5. In the extraction of petroleum, enhanced oil recovery techniques are applied to maximize oil extraction from oil fields. The injected water displaces the oil in the reservoir which is transported to recovery wells. As the reservoir is not uniform in permeability, injected water tends to go through a high permeable zone and does not go through the zone where oil remains. In this situation, the bacterial profile modification technique, [39] which injects bacteria into the high permeable zone to promote bioclogging can be employed. It is a type of microbial enhanced oil recovery.
  6. The potential of bioclogging in geotechnical engineering [40] is under exploration, particularly for improving soil mechanical properties. This involves strategies like reducing porosity and hydraulic conductivity, and enhancing shear strength through biocementation, thereby optimizing the soil for construction and environmental applications. [41]

See also

Related Research Articles

<span class="mw-page-title-main">Aquifer</span> Underground layer of water-bearing permeable rock

An aquifer is an underground layer of water-bearing material, consisting of permeable or fractured rock, or of unconsolidated materials. Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude, which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could lead to the formation of a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer.

<span class="mw-page-title-main">Percolation</span> Filtration of fluids through porous materials

In physics, chemistry, and materials science, percolation refers to the movement and filtering of fluids through porous materials. It is described by Darcy's law. Broader applications have since been developed that cover connectivity of many systems modeled as lattices or graphs, analogous to connectivity of lattice components in the filtration problem that modulates capacity for percolation.

<span class="mw-page-title-main">Biofilter</span> Pollution control technique

Biofiltration is a pollution control technique using a bioreactor containing living material to capture and biologically degrade pollutants. Common uses include processing waste water, capturing harmful chemicals or silt from surface runoff, and microbiotic oxidation of contaminants in air. Industrial biofiltration can be classified as the process of utilizing biological oxidation to remove volatile organic compounds, odors, and hydrocarbons.

<span class="mw-page-title-main">Constructed wetland</span> Artificial wetland to treat municipal or industrial wastewater, greywater or stormwater runoff

A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development. Constructed wetlands are engineered systems that use the natural functions of vegetation, soil, and organisms to provide secondary treatment to wastewater. The design of the constructed wetland has to be adjusted according to the type of wastewater to be treated. Constructed wetlands have been used in both centralized and decentralized wastewater systems. Primary treatment is recommended when there is a large amount of suspended solids or soluble organic matter.

<i>Geobacter</i> Genus of anaerobic bacteria found in soil

Geobacter is a genus of bacteria. Geobacter species are anaerobic respiration bacterial species which have capabilities that make them useful in bioremediation. Geobacter was found to be the first organism with the ability to oxidize organic compounds and metals, including iron, radioactive metals, and petroleum compounds into environmentally benign carbon dioxide while using iron oxide or other available metals as electron acceptors. Geobacter species are also found to be able to respire upon a graphite electrode. They have been found in anaerobic conditions in soils and aquatic sediment.

In science and engineering, hydraulic conductivity, is a property of porous materials, soils and rocks, that describes the ease with which a fluid can move through the pore space, or fracture network. It depends on the intrinsic permeability of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, Ksat, describes water movement through saturated media. By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.

<span class="mw-page-title-main">Septic drain field</span> Type of subsurface wastewater disposal facility

Septic drain fields, also called leach fields or leach drains, are subsurface wastewater disposal facilities used to remove contaminants and impurities from the liquid that emerges after anaerobic digestion in a septic tank. Organic materials in the liquid are catabolized by a microbial ecosystem.

The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas.

<span class="mw-page-title-main">Rain garden</span> Runoff reducing landscaping method

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.

In soil, macropores are defined as cavities that are larger than 75 μm. Functionally, pores of this size host preferential soil solution flow and rapid transport of solutes and colloids. Macropores increase the hydraulic conductivity of soil, allowing water to infiltrate and drain quickly, and shallow groundwater to move relatively rapidly via lateral flow. In soil, macropores are created by plant roots, soil cracks, soil fauna, and by aggregation of soil particles into peds. Macropores can also be found in soil between larger individual mineral particles such as sand or gravel.

<span class="mw-page-title-main">Groundwater recharge</span> Groundwater that recharges an aquifer

Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface. Groundwater recharge also encompasses water moving away from the water table farther into the saturated zone. Recharge occurs both naturally and through anthropogenic processes, where rainwater and/or reclaimed water is routed to the subsurface.

Subsurface flow, in hydrology, is the flow of water beneath Earth's surface as part of the water cycle.

The pore space of soil contains the liquid and gas phases of soil, i.e., everything but the solid phase that contains mainly minerals of varying sizes as well as organic compounds.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

<span class="mw-page-title-main">Infiltration basin</span> Form of engineered sump or percolation pond

An infiltration basin is a form of engineered sump or percolation pond that is used to manage stormwater runoff, prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay. It is essentially a shallow artificial pond that is designed to infiltrate stormwater through permeable soils into the groundwater aquifer. Infiltration basins do not release water except by infiltration, evaporation or emergency overflow during flood conditions.

A permeable reactive barrier (PRB), also referred to as a permeable reactive treatment zone (PRTZ), is a developing technology that has been recognized as being a cost-effective technology for in situ groundwater remediation. PRBs are barriers which allow some—but not all—materials to pass through. One definition for PRBs is an in situ treatment zone that passively captures a plume of contaminants and removes or breaks down the contaminants, releasing uncontaminated water. The primary removal methods include: (1) sorption and precipitation, (2) chemical reaction, and (3) reactions involving biological mechanisms.

A number of factors affect the permeability of soils, from particle size, impurities in the water, void ratio, the degree of saturation, and adsorbed water, to entrapped air and organic material.

<span class="mw-page-title-main">Groundwater pollution</span> Ground released seep into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking) or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

<span class="mw-page-title-main">Non-aqueous phase liquid</span> Liquid solution contaminants that do not dissolve in or easily mix with water

Non-aqueous phase liquids, or NAPLs, are organic liquid contaminants characterized by their relative immiscibility with water. Common examples of NAPLs are petroleum products, coal tars, chlorinated solvents, and pesticides. Strategies employed for their removal from the subsurface environment have expanded since the late-20th century.

<span class="mw-page-title-main">Coastal hydrogeology</span> Branch of hydrogeology

Coastal Hydrogeology is a branch of Hydrogeology that focuses on the movement and the chemical properties of groundwater in coastal areas. Coastal Hydrogeology studies the interaction between fresh groundwater and seawater, including seawater intrusion, sea level induced groundwater level fluctuation, submarine groundwater discharge, human activities and groundwater management in coastal areas.

References

Open Access logo PLoS transparent.svg This article was submitted to WikiJournal of Science for external academic peer review in 2023 ( reviewer reports ). The updated content was reintegrated into the Wikipedia page under a CC-BY-SA-3.0 license ( 2024 ). The version of record as reviewed is: Katsutoshi Seki; et al. (14 February 2024). "Bioclogging" (PDF). WikiJournal of Science. 7 (1): 1. doi:10.15347/WJS/2024.002. ISSN   2470-6345. Wikidata   Q116782181.{{cite journal}}: CS1 maint: unflagged free DOI (link)

  1. Allison, L.E. (1947). "Effect of microorganisms on permeability of soil under prolonged submergence". Soil Science. 63 (6): 439–450. Bibcode:1947SoilS..63..439A. doi:10.1097/00010694-194706000-00003. S2CID   97693977.
  2. Baveye, P.; Vandevivere, P.; Hoyle, B.L.; DeLeo, P.C.; de Lozada, D.S. (2006). "Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials" (PDF). Critical Reviews in Environmental Science and Technology. 28 (2): 123–191. doi:10.1080/10643389891254197.
  3. Gupta, R.P.; Swartzendruber, D. (1962). "Flow-associated reduction in the hydraulic conductivity of quartz sand". Soil Science Society of America Journal. 26 (1): 6–10. Bibcode:1962SSASJ..26....6G. doi:10.2136/sssaj1962.03615995002600010003x.
  4. Frankenberger, W.T.; Troeh, F.R.; Dumenil, L.C. (1979). "Bacterial effects on hydraulic conductivity of soils". Soil Science Society of America Journal. 43 (2): 333–338. Bibcode:1979SSASJ..43..333F. doi:10.2136/sssaj1979.03615995004300020019x.
  5. Vandevivere, P.; Baveye, P. (1992). "Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns" (PDF). Soil Science Society of America Journal. 56 (1): 1–13. Bibcode:1992SSASJ..56....1V. doi:10.2136/sssaj1992.03615995005600010001x.
  6. Xia, L.; Zheng, X.; Shao, H.; Xin, J.; Sun, Z.; Wang, L. (2016). "Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns". Journal of Hydrology. 535: 293–300. Bibcode:2016JHyd..535..293X. doi:10.1016/j.jhydrol.2016.01.075.
  7. Gette-Bouvarot, M.; Mermillod-Blondin, F.; Angulo-Jaramillo, R.; Delolme, C.; Lemoine, D.; Lassabatere, L.; Loizeau, S.; Volatier, L. (2014). "Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance" (PDF). Ecohydrology. 7 (3): 950–964. Bibcode:2014Ecohy...7..950G. doi:10.1002/eco.1421. S2CID   129758850.
  8. Seki, K.; Miyazaki, T.; Nakano, M. (1996). "Reduction of hydraulic conductivity due to microbial effects" (PDF). Transactions of Japanese Society of Irrigation, Drainage and Reclamation Engineering. 181: 137–144. doi:10.11408/jsidre1965.1996.137.
  9. Seki, K.; Miyazaki, T.; Nakano, M. (1998). "Effect of microorganisms on hydraulic conductivity decrease in infiltration" (PDF). European Journal of Soil Science. 49 (2): 231–236. Bibcode:1998EuJSS..49..231S. doi:10.1046/j.1365-2389.1998.00152.x. S2CID   97173198.
  10. Jiang, Y.; Matsumoto, S. (1995). "Change in microstructure of clogged soil in soil wastewater treatment under prolonged submergence". Soil Science and Plant Nutrition. 41 (2): 207–213. Bibcode:1995SSPN...41..207J. doi:10.1080/00380768.1995.10419577.
  11. Taylor, S.W.; Milly, P.C.D.; Jaffé, P.R. (1990). "Biofilm growth and the related changes in the physical properties of a porous medium: 2. Permeability". Water Resources Research. 26 (9): 2161–2169. Bibcode:1990WRR....26.2161T. doi:10.1029/WR026i009p02161.
  12. Zhao, L.; Zhu, W.; Tong, W. (2009). "Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands" (PDF). Journal of Environmental Sciences. 21 (6): 750–757. doi:10.1016/S1001-0742(08)62336-0. PMID   19803078.
  13. Kim, J.; Choi, H.; Pachepsky, Y.A. (2010). "Biofilm morphology as related to the porous media clogging" (PDF). Water Research. 44 (4): 1193–1201. Bibcode:2010WatRe..44.1193K. doi:10.1016/j.watres.2009.05.049. PMID   19604533.
  14. Seki, K.; Miyazaki, T. (2001). "A mathematical model for biological clogging of uniform porous media" (PDF). Water Resources Research. 37 (12): 2995–2999. Bibcode:2001WRR....37.2995S. doi:10.1029/2001WR000395. S2CID   129625309.
  15. Reynolds, W.D.; Brown, D.A.; Mathur, S.P.; Overend, R.P. (1992). "Effect of in-situ gas accumulation on the hydraulic conductivity of peat". Soil Science. 153 (5): 397–408. Bibcode:1992SoilS.153..397R. doi:10.1097/00010694-199205000-00007. S2CID   93225879.
  16. Houot, S.; Berthelin, J. (1992). "Submicroscopic studies of iron deposits occurring in field drains: Formation and evolution". Geoderma. 52 (3–4): 209–222. Bibcode:1992Geode..52..209H. doi:10.1016/0016-7061(92)90037-8.
  17. Volk, E.; Iden, S.C.; Furman, A.; Durner, W.; Rosenzweig, R. (2016). "Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm". Water Resources Research. 52 (8): 5813–5828. Bibcode:2016WRR....52.5813V. doi:10.1002/2016WR018866.
  18. Bouwer, H. (2002). "Artificial recharge of groundwater: hydrogeology and engineering" (PDF). Hydrogeology Journal. 10 (1): 121–142. Bibcode:2002HydJ...10..121B. doi:10.1007/s10040-001-0182-4.
  19. Furumai, H.; Jinadasa, H.K.P.K.; Murakami, M.; Nakajima, F.; Aryal, R.K. (2005). "Model description of storage and infiltration functions of infiltration facilities for urban runoff analysis by a distributed model" (PDF). Water Science and Technology. 52 (5): 53–60. doi:10.2166/wst.2005.0108. PMID   16248180.
  20. Kristiansen, R. (1981). "Sand-filter trenches for purification of septic tank effluent: I. The clogging mechanism and soil physical environment". Journal of Environmental Quality. 10 (3): 353–357. Bibcode:1981JEnvQ..10..353K. doi:10.2134/jeq1981.00472425001000030020x.
  21. Nieć, J.; Spychała, M.; Zawadzki, P. (2016). "New approach to modelling of sand filter clogging by septic tank effluent" (PDF). Journal of Ecological Engineering. 17 (2): 97–107. doi:10.12911/22998993/62296.
  22. "Septic Biomat: defined, properties". InspectAPedia. Retrieved March 22, 2017.
  23. Mauclaire, L.; Schürmann, A.; Thullner, M.; Gammeter, S.; Zeyer, J. (2004). "Slow sand filtration in a water treatment plant: biological parameters responsible for clogging". Journal of Water Supply: Research and Technology-Aqua. 53 (2): 93–108. doi:10.2166/aqua.2004.0009.
  24. Newcomer, M.E.; Hubbard, S.S.; Fleckenstein, J.H.; Maier, U.; Schmidt, C.; Thullner, M.; Ulrich, C.; lipo, N.; Rubin, Y. (2016). "Simulating bioclogging effects on dynamic riverbed permeability and infiltration". Water Resources Research. 52 (4): 2883–2900. Bibcode:2016WRR....52.2883N. doi:10.1002/2015WR018351. S2CID   130425627.
  25. Xian, Y.; Jin, M.; Zhan, H.; Liu, Y. (2019). "Reactive transport of nutrients and bioclogging during dynamic disconnection process of stream and groundwater". Water Resources Research. 55 (5): 3882–3903. Bibcode:2019WRR....55.3882X. doi:10.1029/2019WR024826.
  26. van Beek, C.G.E.M.; van der Kooij, D. (1982). "Sulfate-reducing bacteria in ground water from clogging and non-clogging shallow wells in the netherlands river region". Ground Water. 20 (3): 298–302. Bibcode:1982GrWat..20..298B. doi:10.1111/j.1745-6584.1982.tb01350.x.
  27. "Well remediation and rehabilitation". Groundwater Engineering Limited. Archived from the original on March 22, 2017. Retrieved March 22, 2017.
  28. 1 2 Song, W.; Liu, X.; Zheng, T.; Yang, J. (2020). "A review of recharge and clogging in sandstone aquifer". Geothermics. 87: 101857. Bibcode:2020Geoth..8701857S. doi:10.1016/j.geothermics.2020.101857.
  29. Davis, S.; Fairbanks, W.; Weisheit, H. (1973). "Dairy waste ponds effectively self-sealing". Transactions of the ASAE. 16 (1): 69–71. doi:10.13031/2013.37447.
  30. Ragusa, S.R.; de Zoysa, D.S.; Rengasamy, P. (1994). "The effect of microorganisms, salinity and turbidity on hydraulic conductivity of irrigation channel soil". Irrigation Science. 15 (4): 159–166. Bibcode:1994IrrSc..15..159R. doi:10.1007/BF00193683. S2CID   35184810.
  31. Kamon, M.; Zhang, H.; Katsumi, T. (2002). "Redox effect on the hydraulic conductivity of clay liner" (PDF). Soils and Foundations. 42 (6): 79–91. Bibcode:2002SoFou..42...79K. doi:10.3208/sandf.42.6_79.
  32. Tang, Q.; Wang, H.Y.; Chen, H.; Li, P.; Tang, X.W.; Katsumi, T. (2015). "Long-term hydraulic conductivity of compacted clay permeated with landfill leachates" (PDF). Japanese Geotechnical Society Special Publication. 2 (53): 1845–1848. doi:10.3208/jgssp.CHN-52.
  33. ,Moreira, F.D.; Dias, E.H.O. (2020). "Constructed wetlands applied in rural sanitation: A review". Environmental Research. 190: 110016. doi:10.1016/j.envres.2020.110016. PMID   32768473.
  34. Suliman, F.; French, H.K.; Haugen, L.E.; Søvik, A.K. (2006). "Change in flow and transport patterns in horizontal subsurface flow constructed wetlands as a result of biological growth". Ecological Engineering. 27 (2): 124–133. Bibcode:2006EcEng..27..124S. doi:10.1016/j.ecoleng.2005.12.007.
  35. Lee, M.D.; Thomas, J.M.; Borden, R.C.; Bedient, P.B.; Ward, C.H.; Wilson, J.T. (1998). "Biorestoration of aquifers contaminated with organic compounds" (PDF). Critical Review in Environmental Control. 18 (1): 29–89. doi:10.1080/10643388809388342.
  36. Naftz, D.; Morrison, S.J.; Fuller, C.C.; Davis, J.A. (2002). Handbook of groundwater remediation using permeable reactive barriers: applications to radionuclides, trace Metals, and nutrients. Cambridge, Massachusetts: Academic Press. ISBN   978-0125135634.
  37. Komlos, J.; Cunningham, A.B; Camper, A.K.; Sharp, R.R. (2004). "Biofilm barriers to contain and degrade dissolved tricholoroethylene". Environmental Progress. 23 (1): 69–77. Bibcode:2004EnvPr..23...69K. doi:10.1002/ep.10003.
  38. Seki, K.; Thullner, M.; Hanada, J.; Miyazaki, T. (2006). "Moderate bioclogging leading to preferential flow paths in biobarriers" (PDF). Ground Water Monitoring & Remediation. 26 (3): 68–76. Bibcode:2006GMRed..26c..68S. doi:10.1111/j.1745-6592.2006.00086.x. S2CID   97009671.
  39. Lappan, R.E.; Fogler, H.S. (1996). "Reduction of porous media permeability from in situ leuconostoc mesenteroides growth and dextran production". Biotechnology and Bioengineering. 50 (1): 6–15. CiteSeerX   10.1.1.1017.5978 . doi:10.1002/(SICI)1097-0290(19960405)50:1<6::AID-BIT2>3.0.CO;2-L. PMID   18626894. S2CID   803784.
  40. Ivanov, V.; Stabnikov, V. (2017). "Bioclogging and biogrouts". Construction biotechnology: biogeochemistry, microbiology and biotechnology of construction materials and processes. New York: Springer. pp. 139–178. doi:10.1007/978-981-10-1445-1_8. ISBN   978-9811014444.
  41. Ivanov, V.; Chu, J. (2008). "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ". Reviews in Environmental Science and Bio/Technology. 7 (2): 139–153. Bibcode:2008RESBT...7..139I. doi:10.1007/s11157-007-9126-3.