Extracellular polymeric substance

Last updated
Extracellular polymeric substance matrix formation in a biofilm Biofilm Formation.jpg
Extracellular polymeric substance matrix formation in a biofilm

Extracellular polymeric substances (EPSs) are natural polymers of high molecular weight secreted by microorganisms into their environment. [1] EPSs establish the functional and structural integrity of biofilms, and are considered the fundamental component that determines the physicochemical properties of a biofilm. [2] EPS in the matrix of biofilms provides compositional support and protection of microbial communities from the harsh environments. [3] Components of EPS can be of different classes of polysaccharides, lipids, nucleic acids, proteins, lipopolysaccharides, and minerals.

Contents

Components

EPSs are mostly composed of polysaccharides (exopolysaccharides) and proteins, but include other macromolecules such as DNA, lipids and humic substances. EPSs are the construction material of bacterial settlements and either remain attached to the cell's outer surface, or are secreted into its growth medium. These compounds are important in biofilm formation and cells' attachment to surfaces. EPSs constitute 50% to 90% of a biofilm's total organic matter. [2] [4] [5]

Exopolysaccharides (also sometimes abbreviated EPSs; EPS sugars thereafter) are the sugar-based parts of EPS. Microorganisms synthesize a wide spectrum of multifunctional polysaccharides including intracellular polysaccharides, structural polysaccharides and extracellular polysaccharides or exopolysaccharides. Exopolysaccharides generally consist of monosaccharides and some non-carbohydrate substituents (such as acetate, pyruvate, succinate, and phosphate). Owing to the wide diversity in composition, exopolysaccharides have found diverse applications in various food and pharmaceutical industries. Many microbial EPS sugars provide properties that are almost identical to the gums currently in use. With innovative approaches, efforts are underway to supersede the traditionally used plant and algal gums by their microbial counterparts. Moreover, considerable progress has been made in discovering and developing new microbial EPS sugars that possess novel industrial applications. [6] Levan produced by Pantoea agglomerans ZMR7 was reported to decrease the viability of rhabdomyosarcoma (RD) and breast cancer (MDA) cells compared with untreated cancer cells. In addition, it has high antiparasitic activity against the promastigote of Leishmania tropica. [7] In the1960s and 1970s, the presence of exopolysaccharides in the matrix of plaques associated with tooth decay was investigated. [8] In the field of paleomicrobiology, dental biofilms and their EPS components provide scientists with information about the composition of ancient microbial and host biomolecules as well as the diet of the host. [9]

The minerals, results of biomineralization processes regulated by the environment or bacteria, are also essential components of the EPS. They provide structural integrity to biofilm matrix and act as a scaffold to protect bacterial cells from shear forces and antimicrobial chemicals. [10] The minerals in EPS were found to contribute to morphogenesis of bacteria and the structural integrity of the matrix. For example, in Bacillus subtilis, Mycobacterium smegmatis, and Pseudomonas aeruginosa biofilms, calcite (CaCO3) contributes to the integrity of the matrix. The minerals also associate with medical conditions. In the biofilms of Proteus mirabilis, Proteus vulgaris, and Providencia rettgeri, the minerals calcium and magnesium cause catheter encrustation. [11]

List of EPSes

Succinoglycan from Sinorhizobium meliloti Sinorhizobium meliloti monosuccinylated succinoglycan (EPS I).svg
Succinoglycan from Sinorhizobium meliloti

Biofilm

Biofilm formation

The first step in the formation of biofilms is adhesion. The initial bacterial adhesion to surfaces involves the adhesin–receptor interactions. Certain polysaccharides, lipids and proteins in the matrix function as the adhesive agents. EPS also promotes cell–cell cohesion (including interspecies recognition) to facilitate microbial aggregation and biofilm formation. [12] In general, the EPS-based matrix mediates biofilm assembly as follows. First, the EPS formation takes place at the site of adhesion, it will be either produced on bacterial surfaces or secreted on the surface of attachment, and form an initial polymeric matrix promoting microbial colonization and cell clustering. Next, continuous production of EPS further expands the matrix in 3 dimensions while forming a core of bacterial cells. The bacterial core provides a supporting framework, and facilitates the development of 3D clusters and aggregation of microcolonies. [13] Studies on P. aeruginosa, B. subtilis, V. cholerae, and S. mutans suggested that the transition from initial cell clustering to microcolony appears to be conserved among different biofilm-forming model organisms. [13] As an example, S. mutans produces an exoenzymes, called glucosyltransferases (Gtfs), which synthesize glucans in situ using host diet sugars as substrates. Gtfs even bind to the bacteria that do not synthesize Gtfs, and therefore, facilitate interspecies and interkingdom coadhesion. [14]

Significance in biofilms

Afterwards, as biofilm becomes established, EPS provides physical stability and resistance to mechanical removal, antimicrobials, and host immunity. Exopolysaccharides and environmental DNA (eDNA) contribute to viscoelasticity of mature biofilms so that detachment of biofilm from the substratum will be challenging even under sustained fluid shear stress or high mechanical pressure. [15] In addition to mechanical resistance, EPS also promotes protection against antimicrobials and enhanced drug tolerance. [16] Antimicrobials cannot diffuse through the EPS barrier, resulting in limited drug access into the deeper layers of the biofilm. [17] Moreover, positively charged agents will bind to negatively charged EPS contributing to the antimicrobial tolerance of biofilms, and enabling inactivation or degradation of antimicrobials by enzymes present in biofilm matrix. EPS also functions as local nutrient reservoir of various biomolecules, such as fermentable polysaccharides. [18] A study on V. cholerae in 2017 suggested that due to osmotic pressure differences in V. cholerae biofilms, the microbial colonies physically swell, therefore maximizing their contact with nutritious surfaces and thus, nutrient uptake. [19]

In microalgal biofilms

EPS is found in the matrix of other microbial biofilms such as microalgal biofilms. The formation of biofilm and structure of EPS share a lot of similarities with bacterial ones. The formation of biofilm starts with reversible absorption of floating cells to the surface. Followed by production of EPS, the adsorption will get irreversible. EPS will colonize the cells at the surface with hydrogen bonding. Replication of early colonizers will be facilitated by the presence of organic molecules in the matrix which will provide nutrients to the algal cells. As the colonizers are reproducing, the biofilm grows and becomes a 3-dimensional structure. [20] Microalgal biofilms consist of 90% EPS and 10% algal cells. Algal EPS has similar components to the bacterial one; it is made up of proteins, phospholipids, polysaccharides, nucleic acids, humic substances, uronic acids and some functional groups, such as phosphoric, carboxylic, hydroxyl and amino groups. Algal cells consume EPS as their source of energy and carbon. [21] Furthermore, EPS protects them from dehydration and reinforces the adhesion of the cells to the surface. In algal biofilms, EPS has two sub-categories; soluble EPS (sEPS) and the bounded EPS (bEPS) with former being distributed in the medium and the latter being attached to the algal cells. [22] Bounded EPS can be further subdivided to tightly bounded EPS (TB-EPS) and loosely bounded EPS (LB-EPS). Several factors contribute to the composition of EPS including species, substrate type, nutrient availability, temperature, pH and light intensity. [23]

Function

Capsular exopolysaccharides can protect pathogenic bacteria against desiccation and predation, and contribute to their pathogenicity. [24] Sessile bacteria fixed and aggregated in biofilms are less vulnerable compared to drifting planktonic bacteria, as the EPS matrix is able to act as a protective diffusion barrier. [25] The physical and chemical characteristics of bacterial cells can be affected by EPS composition, influencing factors such as cellular recognition, aggregation, and adhesion in their natural environments. [25] Furthermore, the EPS layer acts as a nutrient trap, facilitating bacterial growth. [25] The exopolysaccharides of some strains of lactic acid bacteria, e.g., Lactococcus lactis subsp. cremoris, contribute a gelatinous texture to fermented milk products (e.g., Viili), and these polysaccharides are also digestible. [26] [27] An example of the industrial use of exopolysaccharides is the application of dextran in panettone and other breads in the bakery industry. [28]

Apart from negative contributions of EPS in biofilms, EPS can also contribute to some beneficial functions. For example, B. subtilis has gained interest for its probiotic properties due to its biofilm which allows it to effectively maintain a favorable microenvironment in the gastrointestinal tract. In order to survive the passage through the upper gastrointestinal tract, B. subtilis produces an extracellular matrix that protects it from stressful environments such as the highly acidic environment in the stomach. [29] In B. subtilis, the protein matrix component, TasA, and the exopolysaccharide have both been shown to be essential for effective plant-root colonization in Arabidopsis and tomato plants. [16] It was also suggested that TasA plays an important role in mediating interspecies aggregation with streptococci. [30]

Ecology

Exopolysaccharides can facilitate the attachment of nitrogen-fixing bacteria to plant roots and soil particles, which mediates a symbiotic relationship. [24] This is important for colonization of roots and the rhizosphere, which is a key component of soil food webs and nutrient cycling in ecosystems. It also allows for successful invasion and infection of the host plant. [24] Bacterial extracellular polymeric substances can aid in bioremediation of heavy metals as they have the capacity to adsorb metal cations, among other dissolved substances. [31] This can be useful in the treatment of wastewater systems, as biofilms are able to bind to and remove metals such as copper, lead, nickel, and cadmium. [31] The binding affinity and metal specificity of EPSs varies, depending on polymer composition as well as factors such as concentration and pH. [31] In a geomicrobiological context, EPSs have been observed to affect precipitation of minerals, particularly carbonates. [32] EPS may also bind to and trap particles in biofilm suspensions, which can restrict dispersion and element cycling. [32] Sediment stability can be increased by EPS, as it influences cohesion, permeability, and erosion of the sediment. [32] There is evidence that the adhesion and metal-binding ability of EPS affects mineral leaching rates in both environmental and industrial contexts. [32] These interactions between EPS and the abiotic environment allow for EPS to have a large impact on biogeochemical cycling. Predator-prey interactions between biofilms and bacterivores, such as the soil-dwelling nematode Caenorhabditis elegans , had been extensively studied. Via the production of sticky matrix and formation of aggregates, Yersinia pestis biofilms can prevent feeding by obstructing the mouth of C. elegans. [33] Moreover, Pseudomonas aeruginosa biofilms can impede the slithering motility of C. elegans, termed as 'quagmire phenotype', resulting in trapping of C. elegans within the biofilms and preventing the exploration of nematodes to feed on susceptible biofilms. [34] This significantly reduced the ability of predator to feed and reproduce, thereby promoting the survival of biofilms.

Use

Novel industrial use

Due to the growing need to find a more efficient and environmentally friendly alternative to conventional waste removal methods, industries are paying more attention to the function of bacteria and their EPS sugars in bioremediation. [35]

Researchers found that adding EPS sugars from cyanobacteria to wastewaters removes heavy metals such as copper, cadmium and lead. [35] EPS sugars alone can physically interact with these heavy metals and take them in through biosorption. [35] The efficiency of removal can be optimized by treating the EPS sugars with different acids or bases before adding them to wastewater. [35] Some contaminated soils contain high levels of polycyclic aromatic hydrocarbons (PAHs); EPSs from the bacterium Zoogloea sp. and the fungus Aspergillus niger , are efficient at removing these toxic compounds. [36] EPSs contain enzymes such as oxidoreductase and hydrolase, which are capable of degrading PAHs. [36] The amount of PAH degradation depends on the concentration of EPSs added to the soil. This method proves to be low cost and highly efficient. [36]

In recent years, EPS sugars from marine bacteria have been found to speed up the cleanup of oil spills. [37] During the Deepwater Horizon oil spill in 2010, these EPS-producing bacteria were able to grow and multiply rapidly. [37] It was later found that their EPS sugars dissolved the oil and formed oil aggregates on the ocean surface, which sped up the cleaning process. [37] These oil aggregates also provided a valuable source of nutrients for other marine microbial communities. This let scientists modify and optimize the use of EPS sugars to clean up oil spills. [37]

New approaches to target biofilms

The application of nanoparticles (NPs) are one of novel promising techniques to target biofilms due to their high surface-area-to-volume ratio, their ability to penetrate to the deeper layers of biofilms and the capacity to releasing antimicrobial agents in a controlled way. Studying NP-EPS interactions could provide deeper understanding on how to develop more effective nanoparticles. [3] "smart release" nanocarriers that can penetrate biofilms and be triggered by pathogenic microenvironments to deliver drugs or multifunctional compounds, such as catalytic nanoparticles to aptamers, dendrimers, and bioactive peptides) have been developed to disrupt the EPS and the viability or metabolic activity of the embedded bacteria. Some factors that would alter the potentials of the NP to transport antimicrobial agents into the biofilm include physicochemical interactions of the NPs with EPS components, the characteristics of the water spaces (pores) within the EPS matrix and the EPS matrix viscosity. [38] Size and surface properties (charge and functional groups) of the NPs are the major determinants of the penetration in and the interaction with the EPS. [3] Another potential antibiofilm strategy is phage therapy. Bacteriophages, viruses that invade specific bacterial host cells, were suggested to be effective agents in penetrating biofilms. [11] In order to reach the maximum efficacy to eradicate biofilms, therapeutic strategies need to target both the biofilm matrix components as well as the embedded microorganisms to target the complex biofilm microenvironment. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Cell wall</span> Outermost layer of some cells

A cell wall is a structural layer that surrounds some cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, and functions as a selective barrier. Another vital role of the cell wall is to help the cell withstand osmotic pressure and mechanical stress. While absent in many eukaryotes, including animals, cell walls are prevalent in other organisms such as fungi, algae and plants, and are commonly found in most prokaryotes, with the exception of mollicute bacteria.

<span class="mw-page-title-main">Biofilm</span> Aggregation of bacteria or cells on a surface

A biofilm is a syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have a three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

A slime layer in bacteria is an easily removable, unorganized layer of extracellular material that surrounds bacteria cells. Specifically, this consists mostly of exopolysaccharides, glycoproteins, and glycolipids. Therefore, the slime layer is considered as a subset of glycocalyx.

<i>Streptococcus mutans</i> Species of bacterium

Streptococcus mutans is a facultatively anaerobic, gram-positive coccus commonly found in the human oral cavity and is a significant contributor to tooth decay. It is part of the "streptococci", an informal general name for all species in the genus Streptococcus. The microbe was first described by James Kilian Clarke in 1924.

Dental plaque is a biofilm of microorganisms that grows on surfaces within the mouth. It is a sticky colorless deposit at first, but when it forms tartar, it is often brown or pale yellow. It is commonly found between the teeth, on the front of teeth, behind teeth, on chewing surfaces, along the gumline (supragingival), or below the gumline cervical margins (subgingival). Dental plaque is also known as microbial plaque, oral biofilm, dental biofilm, dental plaque biofilm or bacterial plaque biofilm. Bacterial plaque is one of the major causes for dental decay and gum disease.

<i>Xanthomonas campestris</i> Species of bacterium

Xanthomonas campestris is a gram-negative, obligate aerobic bacterium that is a member of the Xanthomonas genus, which is a group of bacteria that are commonly known for their association with plant disease. This species includes Xanthomonas campestris pv. campestris the cause of black rot of brassicas, one of the most important diseases of brasicas worldwide.

<span class="mw-page-title-main">Phototrophic biofilm</span> Microbial communities including microorganisms which use light as their energy source

Phototrophic biofilms are microbial communities generally comprising both phototrophic microorganisms, which use light as their energy source, and chemoheterotrophs. Thick laminated multilayered phototrophic biofilms are usually referred to as microbial mats or phototrophic mats. These organisms, which can be prokaryotic or eukaryotic organisms like bacteria, cyanobacteria, fungi, and microalgae, make up diverse microbial communities that are affixed in a mucous matrix, or film. These biofilms occur on contact surfaces in a range of terrestrial and aquatic environments. The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment. In addition to these natural roles, phototrophic biofilms have also been adapted for applications such as crop production and protection, bioremediation, and wastewater treatment.

<i>Shewanella oneidensis</i> Species of bacterium

Shewanella oneidensis is a bacterium notable for its ability to reduce metal ions and live in environments with or without oxygen. This proteobacterium was first isolated from Lake Oneida, NY in 1988, hence its name.

<span class="mw-page-title-main">Cyclic di-GMP</span> Chemical compound

Cyclic di-GMP is a second messenger used in signal transduction in a wide variety of bacteria. Cyclic di-GMP is not known to be used by archaea, and has only been observed in eukaryotes in Dictyostelium. The biological role of cyclic di-GMP was first uncovered when it was identified as an allosteric activator of a cellulose synthase found in Gluconacetobacter xylinus in order to produce microbial cellulose.

<span class="mw-page-title-main">Levan polysaccharide</span> Chemical compound

Levan is a naturally occurring fructan present in many plants and microorganisms. This polymer is made up of fructose, a monosaccharide sugar, connected by 2,6 beta glycosidic linkages. Levan can have both branched and linear structures of relatively low molecular weight. Branched levan forms a very small, sphere-like structure with basal chains 9 units long. The 2,1 branching allows methyl ethers to form and create a spherical shape. The ends of levan also tend to contain a glucosyl residue. Branched levan tends to be more stable than linear polysaccharides. However, the amount of branching and length of polymerization tends to vary among different species. The shortest levan is 6-kestose, a chain of two fructose molecules and a terminal glucose molecule.

Oral ecology is the microbial ecology of the microorganisms found in mouths. Oral ecology, like all forms of ecology, involves the study of the living things found in oral cavities as well as their interactions with each other and with their environment. Oral ecology is frequently investigated from the perspective of oral disease prevention, often focusing on conditions such as dental caries, candidiasis ("thrush"), gingivitis, periodontal disease, and others. However, many of the interactions between the microbiota and oral environment protect from disease and support a healthy oral cavity. Interactions between microbes and their environment can result in the stabilization or destabilization of the oral microbiome, with destabilization believed to result in disease states. Destabilization of the microbiome can be influenced by several factors, including diet changes, drugs or immune system disorders.

<span class="mw-page-title-main">Gliding motility</span>

Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known.

Roberto Kolter is Professor of Microbiology, Emeritus at Harvard Medical School, an author, and past president of the American Society for Microbiology. Kolter has been a professor at Harvard Medical School since 1983 and was Co-director of Harvard's Microbial Sciences Initiative from 2003-2018. During the 35-year term of the Kolter laboratory from 1983 to 2018, more than 130 graduate student and postdoctoral trainees explored an eclectic mix of topics gravitating around the study of microbes. Kolter is a fellow of the American Association for the Advancement of Science and of the American Academy of Microbiology.

Sharklet, manufactured by Sharklet Technologies, is a bio-inspired plastic sheet product structured to impede microorganism growth, particularly bacterial growth. It is marketed for use in hospitals and other places with a relatively high potential for bacteria to spread and cause infections. Coating surfaces with Sharklet works due to the micro-scale of the product's surface.

Biofilm formation occurs when free floating microorganisms attach themselves to a surface. Although there are some beneficial uses of biofilms, they are generally considered undesirable, and means of biofilm prevention have been developed. Biofilms secrete extracellular polymeric substance that provides a structural matrix and facilitates adhesion for the microorganisms; the means of prevention have thus concentrated largely on two areas: killing the microbes that form the film, or preventing the adhesion of the microbes to a surface. Because biofilms protect the bacteria, they are often more resistant to traditional antimicrobial treatments, making them a serious health risk. For example, there are more than one million cases of catheter-associated urinary tract infections (CAUTI) reported each year, many of which can be attributed to bacterial biofilms. There is much research into the prevention of biofilms.

Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.

Alteromonas macleodii is a species of widespread marine bacterium found in surface waters across temperate and tropical regions. First discovered in a survey of aerobic bacteria in 1972, A. macleodii has since been placed within the phylum Pseudomonadota and is recognised as a prominent component of surface waters between 0 and 50 metres. Alteromonas macleodii has a single circular DNA chromosome of 4.6 million base pairs. Variable regions in the genome of A. macleodii confer functional diversity to closely related strains and facilitate different lifestyles and strategies. Certain A. macleodii strains are currently being explored for their industrial uses, including in cosmetics, bioethanol production and rare earth mining.

Acidobacterium capsulatum is a bacterium. It is an acidophilic chemoorganotrophic bacterium containing menaquinone. It is gram-negative, facultative anaerobic, mesophilic, non-spore-forming, capsulated, saccharolytic and rod-shaped. It is also motile by peritrichous flagella. Its type strain is JCM 7670.

<span class="mw-page-title-main">Floc (biofilm)</span> Type of microbial aggregate suspension

A floc is a type of microbial aggregate that may be contrasted with biofilms and granules, or else considered a specialized type of biofilm. Flocs appear as cloudy suspensions of cells floating in water, rather than attached to and growing on a surface like most biofilms. The floc typically is held together by a matrix of extracellular polymeric substance (EPS), which may contain variable amounts of polysaccharide, protein, and other biopolymers. The formation and the properties of flocs may affect the performance of industrial water treatment bioreactors such as activated sludge systems where the flocs form a sludge blanket.

References

  1. Staudt C, Horn H, Hempel DC, Neu TR (December 2004). "Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms". Biotechnology and Bioengineering. 88 (5): 585–592. doi:10.1002/bit.20241. PMID   15470707.
  2. 1 2 Flemming HC, Wingender J, Griebe T, Mayer C (December 21, 2000). "Physico-Chemical Properties of Biofilms". In Evans LV (ed.). Biofilms: Recent Advances in their Study and Control. CRC Press. p. 20. ISBN   978-9058230935.
  3. 1 2 3 Fulaz S, Vitale S, Quinn L, Casey E (November 2019). "Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix". Trends in Microbiology. 27 (11): 915–926. doi:10.1016/j.tim.2019.07.004. PMID   31420126. S2CID   201042373.
  4. Donlan RM (September 2002). "Biofilms: microbial life on surfaces". Emerging Infectious Diseases. 8 (9): 881–890. doi:10.3201/eid0809.020063. PMC   2732559 . PMID   12194761.
  5. Donlan RM, Costerton JW (April 2002). "Biofilms: survival mechanisms of clinically relevant microorganisms". Clinical Microbiology Reviews. 15 (2): 167–193. doi:10.1128/CMR.15.2.167-193.2002. PMC   118068 . PMID   11932229.
  6. Kumar AS, Mody K (2009). "Microbial Exopolysaccharides: Variety and Potential Applications". Microbial Production of Biopolymers and Polymer Precursors. Caister Academic Press. ISBN   978-1-904455-36-3.[ page needed ]
  7. Al-Qaysi SA, Al-Haideri H, Al-Shimmary SM, Abdulhameed JM, Alajrawy OI, Al-Halbosiy MM, et al. (May 2021). "Bioactive Levan-Type Exopolysaccharide Produced by Pantoea agglomerans ZMR7: Characterization and Optimization for Enhanced Production". Journal of Microbiology and Biotechnology. 31 (5): 696–704. doi: 10.4014/jmb.2101.01025 . PMC   9705920 . PMID   33820887.
  8. Bowen WH, Guggenheim B (January 1978). "Therapeutics of caries prevention--concepts and prospects". Acta Odontologica Scandinavica. 36 (4): 185–198. doi:10.3109/00016357809004667. PMID   280114.
  9. Huynh HT, Verneau J, Levasseur A, Drancourt M, Aboudharam G (June 2016). "Bacteria and archaea paleomicrobiology of the dental calculus: a review". Molecular Oral Microbiology. 31 (3): 234–242. doi: 10.1111/omi.12118 . PMID   26194817.
  10. Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I (September 2017). "Architects of nature: growing buildings with bacterial biofilms". Microbial Biotechnology. 10 (5): 1157–1163. doi:10.1111/1751-7915.12833. PMC   5609236 . PMID   28815998.
  11. 1 2 3 Karygianni L, Ren Z, Koo H, Thurnheer T (August 2020). "Biofilm Matrixome: Extracellular Components in Structured Microbial Communities". Trends in Microbiology. 28 (8): 668–681. doi: 10.1016/j.tim.2020.03.016 . PMID   32663461. S2CID   219087510.
  12. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (August 2016). "Biofilms: an emergent form of bacterial life". Nature Reviews. Microbiology. 14 (9): 563–575. doi:10.1038/nrmicro.2016.94. PMID   27510863. S2CID   4384131.
  13. 1 2 Wang C, Hou J, van der Mei HC, Busscher HJ, Ren Y (September 2019). "Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers". mBio. 10 (5). doi:10.1128/mbio.01908-19. PMC   6737243 . PMID   31506311.
  14. Hwang G, Liu Y, Kim D, Li Y, Krysan DJ, Koo H (June 2017). Mitchell TJ (ed.). "Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo". PLOS Pathogens. 13 (6): e1006407. doi: 10.1371/journal.ppat.1006407 . PMC   5472321 . PMID   28617874.
  15. Peterson BW, He Y, Ren Y, Zerdoum A, Libera MR, Sharma PK, et al. (March 2015). "Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges". FEMS Microbiology Reviews. 39 (2): 234–245. doi:10.1093/femsre/fuu008. PMC   4398279 . PMID   25725015.
  16. 1 2 Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (September 2015). "Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes". FEMS Microbiology Reviews. 39 (5): 649–669. doi:10.1093/femsre/fuv015. PMC   4551309 . PMID   25907113.
  17. Karygianni L, Ruf S, Follo M, Hellwig E, Bucher M, Anderson AC, et al. (December 2014). "Novel Broad-Spectrum Antimicrobial Photoinactivation of In Situ Oral Biofilms by Visible Light plus Water-Filtered Infrared A". Applied and Environmental Microbiology. 80 (23): 7324–7336. Bibcode:2014ApEnM..80.7324K. doi:10.1128/aem.02490-14. PMC   4249165 . PMID   25239897.
  18. Cugini C, Shanmugam M, Landge N, Ramasubbu N (July 2019). "The Role of Exopolysaccharides in Oral Biofilms". Journal of Dental Research. 98 (7): 739–745. doi:10.1177/0022034519845001. PMC   6589894 . PMID   31009580.
  19. Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL (August 2017). "Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion". Nature Communications. 8 (1): 327. Bibcode:2017NatCo...8..327Y. doi:10.1038/s41467-017-00401-1. PMC   5569112 . PMID   28835649.
  20. Seviour T, Derlon N, Dueholm MS, Flemming HC, Girbal-Neuhauser E, Horn H, et al. (March 2019). "Extracellular polymeric substances of biofilms: Suffering from an identity crisis". Water Research. 151: 1–7. doi: 10.1016/j.watres.2018.11.020 . hdl: 11311/1071879 . PMID   30557778. S2CID   56174167.
  21. Schnurr PJ, Allen DG (December 2015). "Factors affecting algae biofilm growth and lipid production: A review". Renewable and Sustainable Energy Reviews. 52: 418–429. doi:10.1016/j.rser.2015.07.090. ISSN   1364-0321.
  22. Li N, Liu J, Yang R, Wu L (October 2020). "Distribution, characteristics of extracellular polymeric substances of Phanerochaete chrysosporium under lead ion stress and the influence on Pb removal". Scientific Reports. 10 (1): 17633. Bibcode:2020NatSR..1017633L. doi:10.1038/s41598-020-74983-0. PMC   7572388 . PMID   33077860.
  23. Cheah YT, Chan DJ (December 2021). "Physiology of microalgal biofilm: a review on prediction of adhesion on substrates". Bioengineered. 12 (1): 7577–7599. doi:10.1080/21655979.2021.1980671. PMC   8806711 . PMID   34605338.
  24. 1 2 3 Ghosh PK, Maiti TK (2016). "Structure of Extracellular Polysaccharides (EPS) Produced by Rhizobia and their Functions in Legume–Bacteria Symbiosis: — A Review". Achievements in the Life Sciences. 10 (2): 136–143. doi: 10.1016/j.als.2016.11.003 .
  25. 1 2 3 Harimawan A, Ting YP (October 2016). "Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion". Colloids and Surfaces. B, Biointerfaces. 146: 459–467. doi:10.1016/j.colsurfb.2016.06.039. PMID   27395039.
  26. Welman AD (2009). "Exploitation of Exopolysaccharides from lactic acid bacteria". Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press. ISBN   978-1-904455-45-5.[ page needed ]
  27. Ljungh A, Wadstrom T, eds. (2009). Lactobacillus Molecular Biology: From Genomics to Probiotics. Caister Academic Press. ISBN   978-1-904455-41-7.[ page needed ]
  28. Ullrich M, ed. (2009). Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press. ISBN   978-1-904455-45-5.[ page needed ]
  29. Yahav S, Berkovich Z, Ostrov I, Reifen R, Shemesh M (2018-05-27). "Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis". Artificial Cells, Nanomedicine, and Biotechnology. 46 (sup2): 974–982. doi: 10.1080/21691401.2018.1476373 . PMID   29806505. S2CID   44100145.
  30. Duanis-Assaf D, Duanis-Assaf T, Zeng G, Meyer RL, Reches M, Steinberg D, Shemesh M (June 2018). "Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm". Scientific Reports. 8 (1): 9350. Bibcode:2018NatSR...8.9350D. doi:10.1038/s41598-018-27548-1. PMC   6008451 . PMID   29921978.
  31. 1 2 3 Pal A, Paul AK (March 2008). "Microbial extracellular polymeric substances: central elements in heavy metal bioremediation". Indian Journal of Microbiology. 48 (1): 49–64. doi:10.1007/s12088-008-0006-5. PMC   3450203 . PMID   23100700.
  32. 1 2 3 4 Tourney J, Ngwenya BT (2014-10-29). "The role of bacterial extracellular polymeric substances in geomicrobiology". Chemical Geology. 386 (Supplement C): 115–132. Bibcode:2014ChGeo.386..115T. doi:10.1016/j.chemgeo.2014.08.011.
  33. Atkinson S, Goldstone RJ, Joshua GW, Chang CY, Patrick HL, Cámara M, et al. (January 2011). "Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion". PLOS Pathogens. 7 (1): e1001250. doi: 10.1371/journal.ppat.1001250 . PMC   3017118 . PMID   21253572.
  34. Chan SY, Liu SY, Seng Z, Chua SL (January 2021). "Biofilm matrix disrupts nematode motility and predatory behavior". The ISME Journal. 15 (1): 260–269. doi:10.1038/s41396-020-00779-9. PMC   7852553 . PMID   32958848.
  35. 1 2 3 4 Mota R, Rossi F, Andrenelli L, Pereira SB, De Philippis R, Tamagnini P (September 2016). "Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites". Applied Microbiology and Biotechnology. 100 (17): 7765–7775. doi:10.1007/s00253-016-7602-9. PMID   27188779. S2CID   15287887.
  36. 1 2 3 Jia C, Li P, Li X, Tai P, Liu W, Gong Z (August 2011). "Degradation of pyrene in soils by extracellular polymeric substances (EPS) extracted from liquid cultures". Process Biochemistry. 46 (8): 1627–1631. doi:10.1016/j.procbio.2011.05.005.
  37. 1 2 3 4 Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken MD (27 June 2013). "Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill". PLOS ONE. 8 (6): e67717. Bibcode:2013PLoSO...867717G. doi: 10.1371/journal.pone.0067717 . PMC   3694863 . PMID   23826336.
  38. Miller KP, Wang L, Benicewicz BC, Decho AW (November 2015). "Inorganic nanoparticles engineered to attack bacteria". Chemical Society Reviews. 44 (21): 7787–807. doi:10.1039/c5cs00041f. PMID   26190826.