Automation engineering

Last updated

Automation engineering is the provision of automated solutions to physical activities and industries. [1]

Contents

Automation engineer

Automation engineers are experts who have the knowledge and ability to design, create, develop and manage machines and systems, for example, factory automation, process automation and warehouse automation. [2] Automation technicians are also involved.

Scope

Automation engineering is the integration of standard engineering fields. Automatic control of various control systems for operating various systems or machines to reduce human efforts & time to increase accuracy. Automation engineers design and service electromechanical devices and systems for high-speed robotics and programmable logic controllers (PLCs). [3]

Work and career after graduation

Graduates can work for both government and private sector entities such as industrial production, companies that create and use automation systems, for example the paper industry, automotive industry, metallurgical industry, food and agricultural industry, water treatment, and oil & gas sectors such as refineries, rolling mills and power plants.

Job Description

Automation engineers can design, program, simulate and test automated machinery and processes, and are usually employed in industries such as the energy sector in plants, car manufacturing facilities, food processing plants, and robots. Automation engineers are responsible for creating detailed design specifications and other documents, developing automation based on specific requirements for the process involved, and conforming to international standards like IEC-61508, local standards, and other process specific guidelines and specifications, simulate, test and commission electronic equipment for automation. [4] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Control engineering</span> Engineering discipline that deals with control systems

Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering, chemical engineering and mechanical engineering at many institutions around the world.

<span class="mw-page-title-main">Electrical engineering</span> Branch of engineering

Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after the commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use.

<span class="mw-page-title-main">Mechanical engineering</span> Engineering discipline

Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

<span class="mw-page-title-main">Automation</span> Use of various control systems for operating equipment

Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefit of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision.

Mechatronics engineering, also called mechatronics, is an interdisciplinary branch of engineering that focuses on the integration of mechanical engineering, electrical engineering, electronic engineering and software engineering, and also includes a combination of robotics, computer science, telecommunications, systems, control, and product engineering.

Automotive engineering, along with aerospace engineering and naval architecture, is a branch of vehicle engineering, incorporating elements of mechanical, electrical, electronic, software, and safety engineering as applied to the design, manufacture and operation of motorcycles, automobiles, and trucks and their respective engineering subsystems. It also includes modification of vehicles. Manufacturing domain deals with the creation and assembling the whole parts of automobiles is also included in it. The automotive engineering field is research intensive and involves direct application of mathematical models and formulas. The study of automotive engineering is to design, develop, fabricate, and test vehicles or vehicle components from the concept stage to production stage. Production, development, and manufacturing are the three major functions in this field.

A Bachelor of Engineering or Bachelor of Science in Engineering or AMIE (Sec:A&B) is an undergraduate academic degree awarded to a college graduate majoring in an engineering discipline at a higher education institution.

<span class="mw-page-title-main">Łódź University of Technology</span> University of technology in Łódź, Poland

Łódź University of Technology was created in 1945 and has developed into one of the biggest technical universities in Poland. Originally located in an old factory building, today it covers nearly 200,000 sq. meters in over 70 separate buildings, the majority of which are situated in the main University area. Almost 15,000 students are currently studying at the university. The educational and scientific tasks of the university are carried out by about 3,000 staff members.

The following outline is provided as an overview of and topical guide to automation:

<span class="mw-page-title-main">STANKIN</span> Russian university

The Moscow State University of Technology "STANKIN", previously the Moscow Machine and Tool Institute, the name of which is still preserved in the acronym STANKIN, is a Russian technical higher education institution founded in 1930. Today STANKIN trains specialists in machinery, robotics, CNC's, electronics, automation and control systems, economics of enterprises, informatics and measurement systems.

<span class="mw-page-title-main">Agricultural robot</span> Robot deployed for agricultural purposes

An agricultural robot is a robot deployed for agricultural purposes. The main area of application of robots in agriculture today is at the harvesting stage. Emerging applications of robots or drones in agriculture include weed control, cloud seeding, planting seeds, harvesting, environmental monitoring and soil analysis. According to Verified Market Research, the agricultural robots market is expected to reach $11.58 billion by 2025.

<span class="mw-page-title-main">Manufacturing engineering</span> Branch of engineering

Manufacturing engineering or production engineering is a branch of professional engineering that shares many common concepts and ideas with other fields of engineering such as mechanical, chemical, electrical, and industrial engineering. Manufacturing engineering requires the ability to plan the practices of manufacturing; to research and to develop tools, processes, machines, and equipment; and to integrate the facilities and systems for producing quality products with the optimum expenditure of capital.

Model-based design (MBD) is a mathematical and visual method of addressing problems associated with designing complex control, signal processing and communication systems. It is used in many motion control, industrial equipment, aerospace, and automotive applications. Model-based design is a methodology applied in designing embedded software.

The IEEE Robotics and Automation Society is a professional society of the IEEE that supports the development and the exchange of scientific knowledge in the fields of robotics and automation, including applied and theoretical issues.

<span class="mw-page-title-main">Hendrik Van Brussel</span> Belgian roboticist

Hendrik (Rik) Van Brussel is a Belgian emeritus professor of mechanical engineering of the KU Leuven, world-renowned for his research on robotics, mechatronics and holonic manufacturing systems.

Instrumentation and control engineering (ICE) is a branch of engineering that studies the measurement and control of process variables, and the design and implementation of systems that incorporate them. Process variables include pressure, temperature, humidity, flow, pH, force and speed.

Industrial and production engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of engineering procedures in manufacturing processes and production methods. Industrial engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production engineering includes three areas: Mechanical engineering, industrial engineering, and management science.

<span class="mw-page-title-main">Automation technician</span> Profession

Automation technicians repair and maintain the computer-controlled systems and robotic devices used within industrial and commercial facilities to reduce human intervention and maximize efficiency. Their duties require knowledge of electronics, mechanics and computers. Automation technicians perform routine diagnostic checks on automated systems, monitor automated systems, isolate problems and perform repairs. If a problem occurs, the technician needs to be able to troubleshoot the issue and determine if the problem is mechanical, electrical or from the computer systems controlling the process. Once the issue has been diagnosed, the technician must repair or replace any necessary components, such as a sensor or electrical wiring. In addition to troubleshooting, Automation technicians design and service control systems ranging from electromechanical devices and systems to high-speed robotics and programmable logic controllers (PLCs). These types of systems include robotic assembly devices, conveyors, batch mixers, electrical distribution systems, and building automation systems. These machines and systems are often found within industrial and manufacturing plants, such as food processing facilities. Alternate job titles include field technician, bench technician, robotics technician, PLC technician, production support technician and maintenance technician.

PLC technicians design, program, repair, and maintain programmable logic controller (PLC) systems used within manufacturing and service industries ranging from industrial packaging to commercial car washes and traffic lights.

Predictive engineering analytics (PEA) is a development approach for the manufacturing industry that helps with the design of complex products. It concerns the introduction of new software tools, the integration between those, and a refinement of simulation and testing processes to improve collaboration between analysis teams that handle different applications. This is combined with intelligent reporting and data analytics. The objective is to let simulation drive the design, to predict product behavior rather than to react on issues which may arise, and to install a process that lets design continue after product delivery.

References

  1. IEEE Robotics and Automation Society. Safety, Security, and Rescue Robotics (SSRR) summer school. Curtin Research Publications, 2012. Retrieved 8 December 2020.
  2. Jianhua, Zhang (2017). Mechatronics And Automation Engineering - Proceedings Of The 2016 International Conference (Icmae2016). World Scientific. ISBN   9789813208544 . Retrieved 27 June 2018.
  3. Caldwell, Darwin. Robotics and Automation in the Food Industry - 1st Edition. Woodhead Publishing 2012. ISBN   9781845698010
  4. Zhang, Jianhua (2017). Mechatronics and Automation Engineering: Proceedings of the 2016 International Conference on Mechatronics and Automation Engineering ICiMAE 2016, Xiamen, China, 22-24 April 2016. World Scientific. ISBN   9789813208537 . Retrieved 27 June 2018.
  5. O'Dell, Thomas H. Circuits for Electronic Instrumentation. Cambridge University Press 1 Edition, 2005.