Instrumentation and control engineering

Last updated

Instrumentation and control engineering (ICE) is a branch of engineering that studies the measurement and control of process variables, and the design and implementation of systems that incorporate them. Process variables include pressure, temperature, humidity, flow, pH, force and speed.

Contents

ICE combines two branches of engineering. Instrumentation engineering is the science of the measurement and control of process variables within a production or manufacturing area. [1] Meanwhile, control engineering, also called control systems engineering, is the engineering discipline that applies control theory to design systems with desired behaviors.

Control engineers are responsible for the research, design, and development of control devices and systems, typically in manufacturing facilities and process plants. Control methods employ sensors to measure the output variable of the device and provide feedback to the controller so that it can make corrections toward desired performance. Automatic control manages a device without the need of human inputs for correction, such as cruise control for regulating a car's speed.

Control systems engineering activities are multi-disciplinary in nature. They focus on the implementation of control systems, mainly derived by mathematical modeling. Because instrumentation and control play a significant role in gathering information from a system and changing its parameters, they are a key part of control loops.

As profession

High demand for engineering professionals is found in fields associated with process automation. Specializations include industrial instrumentation, system dynamics, process control, and control systems. Additionally, technological knowledge, particularly in computer systems, is essential to the job of an instrumentation and control engineer; important technology-related topics include human–computer interaction, programmable logic controllers, and SCADA. The tasks center around designing, developing, maintaining and managing control systems. [2]

The goals of the work of an instrumentation and control engineer are to maximize:

As academic discipline

Instrumentation and control engineering is a vital field of study offered at many universities worldwide at both the graduate and postgraduate levels. This discipline integrates principles from various branches of engineering, providing a comprehensive understanding of the design, analysis, and management of automated systems.

Typical coursework for this discipline includes, but is not limited to, subjects such as control system design, instrumentation fundamentals, process control, sensors and signal processing, automation, robotics, and industrial data communications. Advanced courses may delve into topics like intelligent control systems, digital signal processing, and embedded systems design.

Students often have the opportunity to engage in hands-on laboratory work and industry-relevant projects, which foster practical skills alongside theoretical knowledge. These experiences are crucial in preparing graduates for careers in diverse sectors including manufacturing, power generation, oil and gas, and healthcare, where they may design and maintain systems that automate processes, improve efficiency, and enhance safety.

Interdisciplinary by nature, the field is accessible to students from various engineering backgrounds. Most commonly, students with a foundation in Electrical Engineering and Mechanical Engineering are drawn to this field due to their strong base in control systems, system dynamics, electro-mechanical machines and devices, and electric circuits (course work). However, with the growing complexity and integration of systems, students from fields like computer engineering, chemical engineering, and even biomedical engineering are increasingly contributing to and benefiting from studies in instrumentation and control engineering.

Furthermore, the rapid advancement of technology in areas like the Internet of Things (IoT), artificial intelligence (AI), and machine learning is continuously shaping the curriculum of this discipline, making it an ever-evolving and dynamic field of study.

See also

Related Research Articles

<span class="mw-page-title-main">Control engineering</span> Engineering discipline that deals with control systems

Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world.

<span class="mw-page-title-main">Programmable logic controller</span> Programmable digital computer used to control machinery

A programmable logic controller (PLC) or programmable controller is an industrial computer that has been ruggedized and adapted for the control of manufacturing processes, such as assembly lines, machines, robotic devices, or any activity that requires high reliability, ease of programming, and process fault diagnosis.

Instrumentation is a collective term for measuring instruments, used for indicating, measuring and recording physical quantities. It is also a field of study about the art and science about making measurement instruments, involving the related areas of metrology, automation, and control theory. The term has its origins in the art and science of scientific instrument-making.

<span class="mw-page-title-main">Automation</span> Use of various control systems for operating equipment

Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefit of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision.

Mechatronics engineering, also called mechatronics, is an interdisciplinary branch of engineering that focuses on the integration of mechanical engineering, electrical engineering, electronic engineering and software engineering, and also includes a combination of robotics, computer science, telecommunications, systems, control, and product engineering.

An industrial process control or simply process control in continuous production processes is a discipline that uses industrial control systems and control theory to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. It is implemented widely in industries such as automotive, mining, dredging, oil refining, pulp and paper manufacturing, chemical processing and power generating plants.

The following outline is provided as an overview of and topical guide to electrical engineering.

A fieldbus is a member of a family of industrial digital communication networks used for real-time distributed control. Fieldbus profiles are standardized by the International Electrotechnical Commission (IEC) as IEC 61784/61158.

In control theory, advanced process control (APC) refers to a broad range of techniques and technologies implemented within industrial process control systems. Advanced process controls are usually deployed optionally and in addition to basic process controls. Basic process controls are designed and built with the process itself, to facilitate basic operation, control and automation requirements. Advanced process controls are typically added subsequently, often over the course of many years, to address particular performance or economic improvement opportunities in the process.

<span class="mw-page-title-main">Hardware architecture</span>

In engineering, hardware architecture refers to the identification of a system's physical components and their interrelationships. This description, often called a hardware design model, allows hardware designers to understand how their components fit into a system architecture and provides to software component designers important information needed for software development and integration. Clear definition of a hardware architecture allows the various traditional engineering disciplines to work more effectively together to develop and manufacture new machines, devices and components.

Direct digital control is the automated control of a condition or process by a digital device (computer). Direct digital control takes a centralized network-oriented approach. All instrumentation is gathered by various analog and digital converters which use the network to transport these signals to the central controller. The centralized computer then follows all of its production rules and causes actions to be sent via the same network to valves, actuators, and other heating, ventilating, and air conditioning components that can be adjusted.

An industrial control system (ICS) is an electronic control system and associated instrumentation used for industrial process control. Control systems can range in size from a few modular panel-mounted controllers to large interconnected and interactive distributed control systems (DCSs) with many thousands of field connections. Control systems receive data from remote sensors measuring process variables (PVs), compare the collected data with desired setpoints (SPs), and derive command functions that are used to control a process through the final control elements (FCEs), such as control valves.

The following outline is provided as an overview of and topical guide to automation:

<span class="mw-page-title-main">Manufacturing engineering</span> Branch of engineering

Manufacturing engineering or production engineering is a branch of professional engineering that shares many common concepts and ideas with other fields of engineering such as mechanical, chemical, electrical, and industrial engineering. Manufacturing engineering requires the ability to plan the practices of manufacturing; to research and to develop tools, processes, machines and equipment; and to integrate the facilities and systems for producing quality products with the optimum expenditure of capital. Transitioning the product to manufacture it in volumes is considered part of product engineering.

<span class="mw-page-title-main">Electronic engineering</span> Electronic engineering involved in the design of electronic circuits, devices, and their systems

Electronic engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current flow. Previously electrical engineering only used passive devices such as mechanical switches, resistors, inductors, and capacitors.

The following outline is provided as an overview of and topical guide to control engineering:

Industrial and production engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of engineering procedures in manufacturing processes and production methods. Industrial engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production engineering includes three areas: Mechanical engineering, industrial engineering, and management science.

Automation engineering is the provision of automated solutions to physical activities and industries.

<span class="mw-page-title-main">Automation technician</span> Profession

Automation technicians repair and maintain the computer-controlled systems and robotic devices used within industrial and commercial facilities to reduce human intervention and maximize efficiency. Their duties require knowledge of electronics, mechanics and computers. Automation technicians perform routine diagnostic checks on automated systems, monitor automated systems, isolate problems and perform repairs. If a problem occurs, the technician needs to be able to troubleshoot the issue and determine if the problem is mechanical, electrical or from the computer systems controlling the process. Once the issue has been diagnosed, the technician must repair or replace any necessary components, such as a sensor or electrical wiring. In addition to troubleshooting, Automation technicians design and service control systems ranging from electromechanical devices and systems to high-speed robotics and programmable logic controllers (PLCs). These types of systems include robotic assembly devices, conveyors, batch mixers, electrical distribution systems, and building automation systems. These machines and systems are often found within industrial and manufacturing plants, such as food processing facilities. Alternate job titles include field technician, bench technician, robotics technician, PLC technician, production support technician and maintenance technician.

PLC technicians design, program, repair, and maintain programmable logic controller (PLC) systems used within manufacturing and service industries ranging from industrial packaging to commercial car washes and traffic lights.

References

  1. "Instrumentation ", The Northern Alberta Institute of Technology., Retrieved 17 October 2012.
  2. "Instrumentation and Control Engineering is for Perfectionists", Diksha P Gupta