Nelumbo nucifera

Last updated

Nelumbo nucifera
Lotus flower (978659).jpg
Lotus flower
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Order: Proteales
Family: Nelumbonaceae
Genus: Nelumbo
Species:
N. nucifera
Binomial name
Nelumbo nucifera
Synonyms
  • Nelumbium speciosum Willd.
  • Nelumbo komarovii Grossh.
  • Nymphaea nelumbo
British 19th century, East Indian Lotus (Nelumbo nucifera), late 19th century, National Gallery of Art, NGA 52325 British 19th Century, East Indian Lotus (Nelumbo nucifera), late 19th century, NGA 52325.jpg
British 19th century, East Indian Lotus (Nelumbo nucifera), late 19th century, National Gallery of Art, NGA 52325

Nelumbo nucifera, also known as sacred lotus, Indian lotus, [1] or simply lotus, is one of two extant species of aquatic plant in the family Nelumbonaceae. It is sometimes colloquially called a water lily, though this more often refers to members of the family Nymphaeaceae. [2]

Contents

Lotus plants are adapted to grow in the flood plains of slow-moving rivers and delta areas. Stands of lotus drop hundreds of thousands of seeds every year to the bottom of the pond. While some sprout immediately and most are eaten by wildlife, the remaining seeds can remain dormant for an extensive period of time as the pond silts in and dries out. During flood conditions, sediments containing these seeds are broken open, and the dormant seeds rehydrate and begin a new lotus colony.

Under favorable circumstances, the seeds of this aquatic perennial may remain viable for many years, with the oldest recorded lotus germination being from seeds 1,300 years old recovered from a dry lakebed in northeastern China. [3] Therefore, the Chinese regard the plant as a symbol of longevity.

It has a very wide native distribution, ranging from central and northern India (at altitudes up to 1,400 m or 4,600 ft in the southern Himalayas [4] ), through northern Indochina and East Asia (north to the Amur region; the Russian populations have sometimes been referred to as "Nelumbo komarovii"), with isolated locations at the Caspian Sea. [5] Today, the species also occurs in southern India, Sri Lanka, virtually all of Southeast Asia, New Guinea, and northern and eastern Australia, but this is probably the result of human translocations. [5] It has a very long history (c. 3,000 years) of being cultivated for its edible seeds [5] and is commonly cultivated in water gardens. [4] It is the national flower of India and Vietnam.

Names

Nelumbo nucifera is also known as Egyptian bean. [6] [7]

Classification

The lotus is often confused with the true water lilies of the genus Nymphaea , in particular N. caerulea , the "blue lotus." In fact, several older systems, such as the Bentham & Hooker system (which is widely used in the Indian subcontinent), refer to the lotus by its old synonym, Nymphaea nelumbo.[ citation needed ]

While all modern plant taxonomy systems agree that this species belongs in the genus Nelumbo , the systems disagree as to which family Nelumbo should be placed in or whether the genus should belong in its own unique family and order. According to the APG IV system, N. nucifera, N. lutea , and their extinct relatives belong in Proteales with the protea flowers [8] due to genetic comparisons. Older systems, such as the Cronquist system, place N. nucifera and its relatives in the order Nymphaeles based on anatomical similarities. [9] According to the APG IV classification, the closest relatives of Nelumbo include the sycamores (Platanaceae).

Botany

Lotus plant Nelumbo nucifera1romainguy.jpg
Lotus plant
Carpellary receptacle of lotus Lotus flower core - carpellary receptacle 09.jpg
Carpellary receptacle of lotus

The lotus roots are planted in pond or river bottom soil, while the leaves float on the water's surface or are held well above it. The leaf stalks (petioles) can be up to 200 cm (6 ft 7 in) long, allowing the plant to grow in water to that depth, [10] The peltate leaf blade or lamina can have a horizontal spread of 1 m (3 ft 3 in). [11] [12] The leaves may be as large as 80 cm (31 in) in diameter. [13]

Flower

The flowers are usually found on thick stems rising several centimeters above the leaves. They are showy and grow up to 35 cm (14 in) in diameter. [13] [14] [15] [16]

Some cultivated varieties have extraordinary numbers of petals. For example, the Chinese variety qian ban lian ("thousand petals lotus") can have between 3000 and 4000 petals in a single blossom [17] and the Japanese variety ohmi myoren ("strange lotus") can have between 2000 and 5000 petals, [18] the greatest number recorded for any species of plant.

Researchers report that the lotus has the remarkable ability to regulate the temperature of its flowers within a narrow range, just as humans and other warm-blooded animals do. [19] Roger S. Seymour and Paul Schultze-Motel, physiologists at the University of Adelaide in Australia, found that lotus flowers blooming in the Adelaide Botanic Gardens maintained a temperature of 30–35 °C (86–95 °F), even when the air temperature dropped to 10 °C (50 °F). They suspect the flowers may be doing this to attract cold-blooded insect pollinators. Studies published in the journals Nature and Philosophical Transactions: Biological Sciences in 1996 and 1998 were important contributions in the field of thermoregulation in plants. Two other species known to be able to regulate their temperature include Symplocarpus foetidus [20] and Thaumatophyllum bipinnatifidum .[ citation needed ] The red tiger lotus is native to West Africa, including Nigeria and Cameroon, and thrives in slow-moving water.

Seed

A fertilized lotus flower bears fruit that contains a cluster of 10 to 30 seeds. Each seed is ovoid 1–2.5 cm wide by 1–1.5 cm long with a brownish coat. [21] :132 Lotus seeds can remain viable after long periods of dormancy. In 1994, a seed from a sacred lotus, dated at roughly 1,300 years old ± 270 years, was successfully germinated. [22] [23]

The traditional sacred lotus is only distantly related to Nymphaea caerulea , but possesses similar chemistry. Both Nymphaea caerulea and Nelumbo nucifera contain the alkaloids nuciferine and aporphine.[ citation needed ]

The genome of the sacred lotus was sequenced in May 2013. [24] [25] [26]

Cultivation

The sacred lotus grows in water up to 2.5 m (8 ft) deep. The minimum water depth is about 30 cm (12 in). In colder climates, having a deeper water level protects the tubers more effectively, and overall is helpful for better growth and flowering. The sacred lotus germinates at temperatures above 13 °C (55 °F). [27] Most varieties are not naturally cold-hardy, but may readily adapt to living outdoors year-round in USDA hardiness zones 6 through 11 (with some growers having success in zones as low as 4 or 5); the higher the zone's number, the greater the adaptability of the plants. [28] In the growing season, from April to September (in the northern hemisphere), the average daytime temperature needed is 23 to 27 °C (73 to 81 °F). [29] In regions with low light levels in winter, the sacred lotus has a period of dormancy. The tubers are not cold-resistant, if removed from water, and exposed to the air; when kept underwater in soil, the energy-rich tubers can overwinter temperatures below 0 °C (32 °F). [30] If the plants are taken out of the water for wintertime storage (mostly in exceptionally cold climates), the tubers and roots must be stored in a stable, frost-free location, such as a garage, preferably in a cardboard box or container filled completely with vermiculite or perlite. Care must be taken to fully insulate the tubers. [31] [32]

Planting

The sacred lotus requires a nutrient-rich and loamy soil. [28] In the beginning of the summer period (from March until May in the northern hemisphere), [33] a small part of rhizome with at least one eye is either planted in ponds [34] or directly into a flooded field. [35] [36] There are several other propagation ways via seeds or buds. [30] Furthermore, tissue culture is a promising propagation method for the future to produce high volumes of uniform, true-to-type, disease-free materials. [37]

The first step of the cultivation is to plough the dry field. One round of manure is applied after ten days, before flooding the field. To support a quick initial growth, the water level is relatively low [36] and increases when plants grow. Then a maximum of approximately 4,000 per hectare (1,600/acre) with grid spacing of 1.2 by 2 metres (3 ft 11 in × 6 ft 7 in) [37] are used to plant directly into the mud 10–15 cm (3+785+78 in) below the soil surface. [38]

Harvest

Lotus bud LotusBud0048a.jpg
Lotus bud
Lotus bud in advanced stage of bloom A budding lotus flower.jpg
Lotus bud in advanced stage of bloom

The stolon is ready to harvest two to three months after planting. It must be harvested before flowering. Harvesting the stolon is done by manual labor. For this step, the field is not drained. The stolon is pulled out of the water by pulling and shaking the young leaves in the shallow water. [36]

The first leaves and flowers can be harvested three months after planting. Flowers can be picked every two days during summer and every three days during the colder season. Four months after planting, the production of flowers has its climax. The harvest of flowers is usually done by hand for three to four months. [36]

Seeds and seed pods can be harvested when they turn black four to eight months after planting. After sun drying for two to three days, they are processed by mechanical tools to separate seed coats and embryos. [36] [30]

The rhizomes mature to a suitable stage for eating in approximately six to nine months. [38] Early varieties are harvested in July until September and late varieties from October until March, after the ponds or fields are drained. [30] [31] [36] [38] [39] The large, starch-rich rhizomes are easy to dig out of the drained soil. [36] In small-scale production, they are harvested by hand using fork-like tools. [30] In Japan and on bigger farms, manual labour harvesting is fully replaced by machines. [27]

Varieties and cultivars

Lotus varieties have been classified according to their use into three types: rhizome lotus, seed lotus, and flower lotus. Varieties that show more than one of these characteristics are classified by the strongest feature. [37] Regarding production area in China, rhizome lotus has the largest area with 200,000 ha (490,000 acres), followed by seed lotus with 20,000 ha (49,000 acres). [40]

Rhizome lotus

Rhizome lotus cultivars produce a higher yield and higher quality rhizomes than seed or flower lotus cultivars. Furthermore, this group grows tall and produces few to no flowers. [40] [37]

Cultivars can be classified by harvest time or by the depth of rhizomes into these types:

  • Pre-mature (early) cultivars are harvested before the end of July, serotinous (late) cultivars from September on, and mid-serotinous or mid-matutinal cultivars are in between these harvest times. Using pre-mature cultivars, rhizomes can be harvested earlier and sold for a higher price. [40]
  • Adlittoral, deep, and intermediate cultivars are distinguished according to the depth in which the rhizomes grow underground. Adlittoral cultivars range from 10 to 20 cm (3.9 to 7.9 in) depth and are often premature. They develop faster due to higher temperatures in surface soil layers. When harvested in July, adlittorals have higher yields than deeper-growing cultivars, but not necessarily when harvested in September. Rhizomes of adlittoral cultivars are crisp and good for frying purposes. Deep cultivars grow more than 40 cm (16 in) deep. They are often serotinous and can harvest high yields. Their rhizomes are starch-rich. [40]

The main popular Nelumbo nucifera cultivars in China are Elian 1, Elian 4, Elian 5, 9217, Xin 1, and 00–01. The average yield of these cultivars is 7.5–15 t/ha (3.3–6.7 tons/acre) of harvest in July and 30–45 t/ha (13–20 tons/acre) of harvest in September. [40] In Australia, the cultivar grown for the fresh rhizome market in Guangdong and Japan, the common rhizome cultivars are Tenno and Bitchu. [37]

Seed lotus

Nelumbo nucifera seed head Nelumbo nucifera5.jpg
Nelumbo nucifera seed head

The characteristics of seed lotus cultivars are a large number of carpels and seed sets as well as large seeds with better nutritional properties. Roots of these varieties are thin, fibrous, and do not form good rhizomes. [37] The main popular cultivars for seed production in China are Cunsanlian, Xianglian 1, Zilian 2, Jianlian, Ganlian 62, and Taikong 36. The average yield of these cultivars in China is 1.05–1.9 t/ha (0.5–0.8 tons/acre) of dry seeds and weight of thousand seeds between 1,020 and 1,800 g (36 and 63 oz). [40] Green Jade and Vietnam-Red are recommended cultivars for seed production in Australia. [37]

Flower lotus

Flower lotus cultivars are used exclusively for ornamental purpose, producing many flowers and the lowest plant height. [40]

The seed production of flower lotus is typically poor regarding yield and quality. Flower types differ in the number of petals (single petals, double petals, or multi-petals) and their colours range from single colour in white, yellow, pink, and red to bi-colour, most often of white petals with pink tips or highlights. [37]

The flowers are capable of producing ink used by artists such as Morrison Polkinghorne to produce abstract images of the landscapes of southern Asia. [41]

One example of a flower lotus is Wanlian. Also known as bowl lotus, wanlians are any miniature cultivars of N. nucifera sized between 5 and 8 centimetres (2.0 and 3.1 in). Bowl lotuses come in various colours and numbers of petals, and they bloom longer than other species of lotus. But together with the rhizome, their seeds are often too small or too hard to be eatable. [42]

The sacred lotus may be crossed with the yellow lotus to produce interspecific hybrids. A few varieties have been produced with differing appearances. [43]

Farming

About 70% of lotus for human consumption is produced in China. In 2005, the cultivation area in China was estimated at 300,000 hectares (740,000 acres). [30] A majority of lotus production takes place in managed farming systems in ponds or flooded fields like rice. [40]

The most widely used system is crop rotation with rice and vegetables. This system is applicable if the propagule (small piece of rhizome) can be planted early in the year. The rhizomes are harvested in July, after which rice can be planted in the same field. Rice is then harvested in October. From November until March, the field stays either free or terricolous vegetables, such as cabbage or spinach, are planted. Alternatively, the vegetable can also be planted after the harvest of the lotus. [40]

Another alternative way is not to harvest the lotus rhizome, although it is ripe. A terricolous vegetable is planted between the rhizomes into the drained field. The rhizomes are then harvested next March. [40]

A third way is to plant lotus in ponds or fields and raise aquatic animals such as fish, shrimp, or crab in the same field. [40] A more efficient use of the water for both, the aquatic animal and the lotus production has been identified with this planting pattern. [44]

Use

Lotus effect on nelumbo nucifera hybrid Lotus Nelumbo nucifera Water Drops 2654px.jpg
Lotus effect on nelumbo nucifera hybrid

Culinary

Rhizomes

Lotus rhizomes Lotus root.jpg
Lotus rhizomes
Boiled, sliced lotus roots used in various Asian cuisines JaRenkonLotus11R.jpg
Boiled, sliced lotus roots used in various Asian cuisines

The rhizomes of lotus (Chinese :蓮藕; pinyin :lián-ǒu, Japanese : 蓮根, romanized: renkon, Korean : 연군 or 蓮根, romanized: yeongun, Hindi : कमल ककड़ी, romanized: kamal kakdi, Telugu : అల్లిదుంప, romanized: alli'dumpa) [45] are consumed as a vegetable in Asian countries, extensively in China, Japan, and India, sold whole or in cut pieces, fresh, frozen, or canned. They are fried or cooked mostly in soups, soaked in syrup or pickled in vinegar (with sugar, chili and garlic). [46] [47] Lotus rhizomes have a crunchy texture and are a classic dish at many banquets, where they are deep-fried, stir-fried, or stuffed with meats or preserved fruits. [46] Salads with prawns, sesame oil or coriander leaves are also popular. Fresh lotus root slices are limited by a fast browning rate. [48] [49] Lotus root tea is consumed in Korea.

Lotus root is a popular vegetable in Sri Lanka, where it is often cooked in coconut milk gravy. In India, lotus root (also known as kamal kakdi in Hindi) is cooked as a dry curry or sabzi. [50]

Japan is one of the primary users of the rhizomes, representing about 1% of all vegetables consumed. Japan grows its own lotus but still must import 18,000 tons of lotus rhizome each year, of which China provides 15,000 tons yearly. [51]

Rhizomes contain high amounts of starch (31.2%) without characteristic taste or odor. The texture is comparable to a raw potato. [52] The binding and disintegration properties of isolated Nelumbo starch have been compared with maize and potato starch; Nelumbo starch is shown to be superior as an adjuvant in the preparation of tablets. [53] When dried, N. nucifera is also made into flour, another popular use of this vegetable. [46] [47]

Pips

Lotus pip tea is consumed in Korea.

Seeds

Fresh lotus seeds ready to eat Lotus fruit seeds.jpg
Fresh lotus seeds ready to eat

Fresh lotus seeds (simplified Chinese : 莲子 ; traditional Chinese : 蓮子 ; pinyin :liánzǐ; Cantonese Yale :lìhnjí) are nutritious but also vulnerable to microbial contamination, especially fungal infections. Therefore, mostly dry lotus seed-based products are found on the market. Traditional sun baking combined with charcoal processing dries the seeds but results in a loss of nutrients. Freeze-dried lotus seeds have a longer shelf life and maintain original nutrients, while no differences in flavour are found after rehydration compared to fresh lotus seeds. [54] [55]

Dry stored lotus seeds are sensitive to moisture and mold infestation; researchers continue to explore new ways to preserve fresh lotus seeds, such as radiation processing. [56]

Lotus seeds can be processed into moon cake, lotus seed noodles and food in the forms of paste, fermented milk, rice wine, ice cream, popcorn (phool makhana), and others, with lotus seeds as the main raw material. Traditional Chinese medicine claims that fresh lotus seed wine has thirst-quenching, spleen-healing, and anti-diarrheal advantages after drinking, attributed to unspecified bioactive compounds. [57] [58] Lotus seed tea is consumed in Korea, and lotus embryo tea is consumed in China and Vietnam. [58]

Stems

Young lotus stems are used as a salad ingredient in Vietnamese cuisine and as a vegetable ingredient for some soup and curry in Thailand, such as keang som sai bua (Thai : แกงส้มสายบัว, lotus stem sour soup) and keang kati sai bua (แกงกะทิสายบัว, lotus stem in coconut milk curry).

In northern and eastern regions of India, the stalk of the flower is used to prepare a soup, kamal gatte ki sabji (Hindi : कमल गट्टे की सब्जी) and an appetizer, kamal kakdi pakode (Hindi : कमल ककडी पकौडे). In South Indian states, the lotus stem is sliced, marinated with salt to dry, and the dried slices are fried and used as a side dish. In Kerala (Malayalam : താമര) and Tamil Nadu, this end product is called thamara vathal.

In the Philippines, an indigenous variety called tukal is used as the main ingredient in dishes with coconut milk. The stems and petals can be bought in markets when in season.

Leaves

Vietnamese-style green young rice (com) wrapped in lotus leaves, traditionally consumed with ripe bananas and tea during autumn at the beginning of the rice harvest Co trung thu.JPG
Vietnamese-style green young rice (cốm) wrapped in lotus leaves, traditionally consumed with ripe bananas and tea during autumn at the beginning of the rice harvest

In China and Korea, lotus leaf tea (Korean : 연잎차, romanized: yeon'ip-cha) is made from the leaves of the lotus. It is also used as a wrap for steaming rice and sticky rice and other steamed dishes in Southeast Asian cuisine, such as lo mai gai in Chinese cuisine or kao hor bai bua (Thai : ข้าวห่อใบบัว), fried rice wrapped in lotus leaf in Thai cuisine.

Vietnamese also use lotus leaves to wrap green young rice, cốm , which is eaten in autumn. The leaves impart a unique scent to the soft, moist rice.

Flowers

Lotus flower tea Yeonkkot-cha.jpg
Lotus flower tea

In Korea, lotus flower tea (Korean : 연꽃차, romanized: yeon'kkot-cha) is made from the dried petals of the white lotus.

The stamens can be dried and made into a fragrant herbal tea (Chinese : 蓮花 ; pinyin :liánhuā cha; Cantonese Yale :lìhnfāa chah), or used to impart a scent to tea leaves (particularly in Vietnam). This Vietnamese lotus tea is called trà sen, chè sen, or chè ướp sen.

Risks

The petals, leaves, and rhizome can also all be eaten raw, but there is a risk of parasite transmission (e.g., Fasciolopsis buski ): it is therefore recommended that they be cooked before eating.

Use in water treatment

Nelumbo nucifera shows high potential for usage in wastewater treatment removing polluting compounds [59] and heavy metals. [60] [61] [62] It is able to grow in variable water conditions [63] and in low light intensity. [59] Various studies show the successful use of N. nucifera to counteract water eutrophication. [59] [64] The leaves of the floating lotus reduce sunlight reaching the lower part of the water. This suppresses algae growth in N. nucifera aquatic systems and thus, the oxygen content is up to 20% higher than in other aquatic plant systems. [59] Due to intense agricultural practices, nitrogen and phosphorus pollution are major problems in aquatic systems. N. nucifera is able to assimilate a higher content of phosphorus than aquatic plants currently used for water remediation (such as water hyacinth). It also assimilates nitrogen ("denitrification") and creates a habitat for bacterial growth in the water body. [59] Through rhizofiltration, heavy metals – including arsenic, copper, and cadmium – can be removed efficiently from the water. [60] [61] The results observed are impressive showing 96% of copper and 85% cadmium metals removed after a seven-day incubation period. [61] The accumulation of heavy metals doesn't show morphological symptoms of metal toxicity; [62] however, the rhizome quality for human consumption needs further study.

Storage and commercialization

Currently, most rhizomes are consumed fresh, and it is not common to store them due to their poor shelf life performance. [65] This limits export possibilities for low-income production countries in Asia. Rhizomes quickly lose water, oxidation occurs and nutrient composition changes within a short time after harvest. Optimal storage temperatures range between 5 and 8 °C (41 and 46 °F). [65] There are three different approaches to storing rhizomes. By stacking the rhizomes, they are storable and remain fresh for about three weeks. Special stacking with silver sand[ clarification needed ] and soil results in five to six layers that prevent water loss, thus, the rhizome stays fresh for up to two months. [65] However, the method is not suitable for commercialization but rather for home use. Hydrogen sulfide fumigation reduces enzymatic browning and therefore ensures rhizome quality. [61] Dipping the rhizomes in a salt solution prevents oxidation and bacterial reproduction, which allows storage for up to five months and greater export ability. This treatment is related to the high cost and inefficient cleaning process before eating the rhizomes.[ clarification needed ] [65]

Use in bioengineering

Nelumbo nucifera contains some thermal-stable proteins that might be useful in protein bioengineering processes. The proteins are characterized by seed longevity used for cell protection and repair under stress. [66] There are also several indications that compounds of N. nucifera are used in drug fabrication in human health research for multiple purposes. [67] Lotus leaves possess hydrophobic characteristics, attributed to a waxy coat that prevents water from adhering to the surface. This attribute has influenced the conception of the "lotus effect" in biomimicry and engineering, guiding the design of materials that resist water and remain self-cleaning. Researchers at the National University of Singapore have utilized the water-repelling structure as inspiration for developing eAir, an aero-elastic sensor capable of detecting subtle pressure changes or other environmental stimuli. [68]

Other uses

Lotus thread is used to weave a special robe for the Buddha at Inle Lake, Myanmar. IMG lotus-thread.JPG
Lotus thread is used to weave a special robe for the Buddha at Inle Lake, Myanmar.

The distinctive dried seed heads, which resemble the spouts of watering cans, are widely sold throughout the world for decorative purposes and for dried flower arranging.

In Asia, the petals are sometimes used for garnish, while the large leaves are used as a wrap for food, not frequently eaten (for example, as a wrapper for zongzi ). Lotus leaves are also used to serve food in various cultures. [69]

A unique fabric called lotus silk, from the lotus plant fibers, is produced only at Inle Lake, Myanmar, and in Siem Reap, Cambodia. This thread is used for weaving special robes for Buddha images called kya thingan (lotus robe).

Chemical composition

The flavonol miquelianin, as well as the alkaloids (+)-(1R)-coclaurine and (−)-(1S)-norcoclaurine, can be found in the leaves of N. nucifera. [70] The plant also contains nuciferine, neferine, and many other benzylisoquinoline alkaloids with medicinal properties. [71] [72]

Health properties and nutrients

Traditional medicine

Lotus root, cooked, no salt
Nutritional value per 100 g (3.5 oz)
Energy 278 kJ (66 kcal)
16.02 g
Sugars 0.50 g
Dietary fiber 3.1 g
Fat
0.07 g
1.58 g
Vitamins Quantity
%DV
Thiamine (B1)
11%
0.127 mg
Riboflavin (B2)
1%
0.01 mg
Niacin (B3)
2%
0.3 mg
Pantothenic acid (B5)
6%
0.302 mg
Vitamin B6
13%
0.218 mg
Folate (B9)
2%
8 μg
Choline
5%
25.4 mg
Vitamin C
30%
27.4 mg
Minerals Quantity
%DV
Calcium
2%
26 mg
Iron
5%
0.9 mg
Magnesium
5%
22 mg
Manganese
10%
0.22 mg
Phosphorus
6%
78 mg
Potassium
12%
363 mg
Sodium
2%
45 mg
Zinc
3%
0.33 mg
Other constituentsQuantity
Water81.42 g

Percentages estimated using US recommendations for adults, [73] except for potassium, which is estimated based on expert recommendation from the National Academies. [74]

All parts of Nelumbo nucifera are edible, with the rhizome and seeds being the main consumption parts. Traditionally rhizomes, leaves, and seeds have been used as folk medicines, Ayurveda, Chinese traditional medicine, and oriental medicine. [75] [76] In Chinese medicine, seeds are still used as lian zi xin (蓮子心). [77]

Lotus rhizomes and seeds and their processing by-products are widely consumed in Asia, the Americas, and Oceania for high content of physiologically active substances. [78] Especially in China, lotus seeds are popular with a cultural history going back about 3000 years. As early as the Han Dynasty, lotus seeds were already recorded as sweet, astringent, nourishing the heart and kidney in "Shen Nong's Herbal Classic". [79] Nowadays there are 22 varieties for the four known Chinese lines, which are found particularly in Jianning (still called "the town of Jianlian lotus seeds in China") and Guangchang ("the town of white lotus seeds in China"). [80]

These days the perennial aquatic herb is gaining popularity because of its nutraceutical and historical importance [78] [58] It will be of economic value if the different parts of lotus can be developed as functional food. [76] [58] Because of its special role in human health and richness in nutrients and bioactive substances, the Chinese Ministry of Health approved the use of N. nucifera as both "food and medicine." [81]

Rhizomes

The rhizomes are 60–14 cm (23.6–5.5 in) long, 0.5–2.5 cm (0.20–0.98 in) in diameter, yellowish white to yellowish brown, smooth, and with nodes and internodes. [82]

Lotus root is a moderate-calorie root vegetable (100 g of root stem provides about 74 calories) and is composed of several vitamins, minerals, and nutrients: 83.80% water, 0.11% fat, 1.56% reducing sugar, 0.41% sucrose, 2.70% crude protein, 9.25% starch, 0.80% fiber, 0.10% ash and 0.06% calcium. [83] 100 g of root provides 44 mg of vitamin C or 73% of daily recommended values (RDA).

Lotus rhizome and its extracts have shown diuretic, psychopharmacological, anti-diabetic, anti-obesity, hypoglycemic, antipyretic and antioxidant activities. [84] [85] [86] [87] [88] [ medical citation needed ]

Seeds

Lotus seeds are mostly oval or spherical, with sizes varying according to varieties. They are generally 1.2–1.8 cm long, with diameters ranging from 0.8 to 1.4 cm and a weight of 1.1–1.4 g. After lotus seeds have been decorticated and peeled, they are edible and rich in nutrients and can be dried for storage. Their nutritional values can differ due to culture environments and varieties. [89]

Not only do these seeds contain proteins of high quality and are rich in a variety of essential amino acids including high contents of albumin (42%) and globulin (27%), they also contain unsaturated fatty acids, carbohydrates, vitamins, calcium, iron, zinc, phosphorus and other trace elements. [90] [91] They also provide water-soluble polysaccharides, alkaloids, flavonoids, superoxide dismutase, and other bioactive components. [92]

Lotus seeds also contain particularly large amounts of vitamins, including VB1, VB2, VB6 and Vitamin E. [93] [94]

The functional components (polyphenols, protein, polysaccharides) in N. nucifera seeds can help combat high blood pressure, diabetes, and gallstones.[ citation needed ]

After lotus seed germination, crude protein and fat levels in the endosperm significantly increase. It is therefore an important method to enhance its nutritional quality. [95] [58]

Cultural and religious significance

An Indian lotus motif on a Hindu temple. Nelumbo nucifera is also the national flower of India. Lotus, a typical Hindu temple motive, in red sandstone, Qutb complex.jpg
An Indian lotus motif on a Hindu temple. Nelumbo nucifera is also the national flower of India.
Lotus symbol in Derafsh Kaviani, flag of the Sasanian Empire Derafsh Kaviani flag of the late Sassanid Empire.svg
Lotus symbol in Derafsh Kaviani, flag of the Sasanian Empire

Nelumbo nucifera is a lotus species with historical cultural and spiritual significance. It is a sacred flower in both Hinduism and Buddhism, [96] representing the path to spiritual awakening and enlightenment. In Christianity, the lotus flower is often associated with the apostle Thomas and his coming to India. [97] The lotus flower is also mentioned in the bible. [98]

In Asian art, a lotus throne is a stylized lotus flower used as the seat or base for a figure. It is the normal pedestal for divine figures in Buddhist art and Hindu art and is often seen in Jain art. Originating in Indian art, it followed Indian religions to East Asia in particular. Lotus flowers are also often held by figures. [99] [100] [101] [102] [103]

The Nelumbo nucifera, which is also called (Nilufar Abi in Persian), can be seen in many reliefs of the Achaemenid period (552 BC) such as the statue of Anahita in the Persepolis. The lotus flower was included in Kaveh the blacksmith's Derafsh and later as the flag of the Sasanian Empire Derafsh Kaviani. Today, it is the symbol of Iranians Solar Hijri calendar.

The lotus flower also holds cultural and religious significance in Ismaili Muslim and related South Asian traditions. For example, in South Asian Ismaili literature, the lotus is compared to the pure soul. A poem describes the lotus' beauty, describing how its delicate white petals remain pure and beautiful, despite its murky environment. Similarly, a pure soul is part of this world, yet is not of this world, much like the circumstances of the lotus. The poem further emphasizes the importance of true knowledge or gnosis, which is likened to the pure rainwater that allows the lotus to flourish. Ismaili belief holds that the true guide provides this true knowledge, without which the pure soul cannot survive. Just as the lotus flower would rather die than drink from a reeking swamp, the pure soul also seeks nourishment solely through true knowledge. [104]

See also

Related Research Articles

<span class="mw-page-title-main">Rose</span> Genus of plants

A rose is either a woody perennial flowering plant of the genus Rosa, in the family Rosaceae, or the flower it bears. There are over three hundred species and tens of thousands of cultivars. They form a group of plants that can be erect shrubs, climbing, or trailing, with stems that are often armed with sharp prickles. Their flowers vary in size and shape and are usually large and showy, in colours ranging from white through yellows and reds. Most species are native to Asia, with smaller numbers native to Europe, North America, and northwestern Africa. Species, cultivars and hybrids are all widely grown for their beauty and often are fragrant. Roses have acquired cultural significance in many societies. Rose plants range in size from compact, miniature roses, to climbers that can reach seven meters in height. Different species hybridize easily, and this has been used in the development of the wide range of garden roses.

<span class="mw-page-title-main">Coconut</span> Species of plant in the palm family

The coconut tree is a member of the palm tree family (Arecaceae) and the only living species of the genus Cocos. The term "coconut" can refer to the whole coconut palm, the seed, or the fruit, which botanically is a drupe, not a nut. They are ubiquitous in coastal tropical regions and are a cultural icon of the tropics.

<span class="mw-page-title-main">Ginger</span> Species of plant used as a spice

Ginger is a flowering plant whose rhizome, ginger root or ginger, is widely used as a spice and a folk medicine. It is a herbaceous perennial which grows annual pseudostems about one meter tall, bearing narrow leaf blades. The inflorescences bear flowers having pale yellow petals with purple edges, and arise directly from the rhizome on separate shoots.

<i>Canna</i> (plant) Genus of flowering plants in the family Cannaceae

Canna or canna lily is the only genus of flowering plants in the family Cannaceae, consisting of 10 species. All of the genus's species are native to the American tropics and naturalized in Europe, India and Africa in the 1860s. Although they grow native to the tropics, most cultivars have been developed in temperate climates and are easy to grow in most countries of the world, as long as they receive at least 6–8 hours average sunlight during the summer, and are moved to a warm location for the winter. See the Canna cultivar gallery for photographs of Canna cultivars.

<i>Typha</i> Genus of flowering plants in the family Typhaceae

Typha is a genus of about 30 species of monocotyledonous flowering plants in the family Typhaceae. These plants have a variety of common names, in British English as bulrush or reedmace, in American English as reed, cattail, or punks, in Australia as cumbungi or bulrush, in Canada as bulrush or cattail, and in New Zealand as reed, cattail, bulrush or raupo. Other taxa of plants may be known as bulrush, including some sedges in Scirpus and related genera.

<span class="mw-page-title-main">Persimmon</span> Edible fruit

The persimmon is the edible fruit of a number of species of trees in the genus Diospyros. The most widely cultivated of these is the kaki persimmon, Diospyros kaki – Diospyros is in the family Ebenaceae, and a number of non-persimmon species of the genus are grown for ebony timber. In 2019, China produced 75% of the world total of persimmons.

<i>Nymphaea</i> Genus of aquatic plants

Nymphaea is a genus of hardy and tender aquatic plants in the family Nymphaeaceae. The genus has a cosmopolitan distribution. Many species are cultivated as ornamental plants, and many cultivars have been bred. Some taxa occur as introduced species where they are not native, and some are weeds. Plants of the genus are known commonly as water lilies, or waterlilies in the United Kingdom. The genus name is from the Greek νυμφαία, nymphaia and the Latin nymphaea, which mean "water lily" and were inspired by the nymphs of Greek and Latin mythology.

<i>Nelumbo</i> Genus of aquatic flowering plants known as "lotus."

Nelumbo is a genus of aquatic plants with large, showy flowers. Members are commonly called lotus, though the name is also applied to various other plants and plant groups, including the unrelated genus Lotus. Members outwardly resemble those in the family Nymphaeaceae, but Nelumbo is actually very distant from that family.

<i>Nelumbo lutea</i> Species of aquatic plant

Nelumbo lutea is a species of flowering plant in the family Nelumbonaceae. Common names include American lotus, yellow lotus, water-chinquapin, and volée. It is native to North America. The botanical name Nelumbo lutea Willd. is the currently recognized name for this species, which has been classified under the former names Nelumbium luteum and Nelumbo pentapetala, among others.

<i>Sanguinaria</i> Genus of flowering plants in the poppy family Papaveraceae

Sanguinaria canadensis, bloodroot, is a perennial, herbaceous flowering plant native to eastern North America. It is the only species in the genus Sanguinaria, included in the poppy family Papaveraceae, and is most closely related to Eomecon of eastern Asia.

<i>Nymphaea nouchali <span style="font-style:normal;">var.</span> caerulea</i> Species of plant

Nymphaea nouchali var. caerulea, is a water lily in the genus Nymphaea, a botanical variety of Nymphaea nouchali.

<i>Iris pseudacorus</i> Species of flowering plant in the iris family Iridaceae

Iris pseudacorus, the yellow flag, yellow iris, or water flag, is a species of flowering plant in the family Iridaceae. It is native to Europe, western Asia and northwest Africa. Its specific epithet pseudacorus means "false acorus", referring to the similarity of its leaves to those of Acorus calamus, as they have a prominently veined mid-rib and sword-like shape. However, the two plants are not closely related. The flower is commonly attributed with the fleur-de-lis.

<i>Canna indica</i> Species of flowering plant

Canna indica, commonly known as Indian shot, African arrowroot, edible canna, purple arrowroot, Sierra Leone arrowroot, is a plant species in the family Cannaceae. It is native to much of South America, Central America, the West Indies, and Mexico. It is also naturalized in the southeastern United States, and much of Europe, sub-Saharan Africa, Southeast Asia, and Oceania.

<i>Moringa oleifera</i> Species of flowering tree

Moringa oleifera is a fast-growing, drought-resistant tree of the family Moringaceae, native to the Indian subcontinent and used extensively in South and Southeast Asia. Common names include moringa, drumstick tree, horseradish tree, or malunggay.

<span class="mw-page-title-main">Lotus seed</span> Seed of plants in the genus Nelumbo

A lotus seed or lotus nut is the seed of plants in the genus Nelumbo, particularly the species Nelumbo nucifera. The seeds are used in Asian cuisine and traditional medicine. Mostly sold in dried, shelled form, the seeds are rich in protein, B vitamins, and dietary minerals.

<span class="mw-page-title-main">Carrot</span> Root vegetable, usually orange in color

The carrot is a root vegetable, typically orange in color, though heirloom variants including purple, black, red, white, and yellow cultivars exist, all of which are domesticated forms of the wild carrot, Daucus carota, native to Europe and Southwestern Asia. The plant probably originated in Persia and was originally cultivated for its leaves and seeds. The most commonly eaten part of the plant is the taproot, although the stems and leaves are also eaten. The domestic carrot has been selectively bred for its enlarged, more palatable, less woody-textured taproot.

<span class="mw-page-title-main">Oldest viable seed</span> Oldest seed known to have grown into a full plant

There have been several seeds known at different times as the oldest viable seed.

<i>Curculigo capitulata</i> Species of flowering plant

Curculigo capitulata is a stout herb that belongs to the genus Curculigo. It is known by the common names palm grass, whale back, and weevil lily, and by various synonyms, including Molineria capitulata. It ranges from the Himalayas and eastern India through Indochina, southern China, Malesia, and New Guinea to Queensland and the Solomon Islands. The plant has yellow flowers and oblong, papery pleated leaves with very short stems. In China and India, the plant has traditional uses as medicine to treat diseases such as hemorrhoids, asthma, and consumptive cough. In Southeast Asia, the plant is also used as food wrapping and the fibres are used to make fishing nets, ropes and false hair. However, in recent years Molineria capitulata is more often used as ornamental plants in gardens. In recent studies, M. capitulata was also found to have potential in treating several chronic diseases due to its high antifungal, antioxidant, cytotoxic, thrombolytic, anti-inflammatory, and analgesic activities.

<i>Nymphaea nouchali</i> Species of aquatic plant

Nymphaea nouchali, often known by its synonym Nymphaea stellata, or by common names blue lotus, star lotus, red water lily, dwarf aquarium lily, blue water lily, blue star water lily or manel flower, is a water lily of genus Nymphaea. It is native to southern and eastern parts of Asia, and is the national flower of Bangladesh and Sri Lanka. In Sanskrit it is called utpala. This species is usually considered to include the blue Egyptian lotus N. nouchali var. caerulea. In the past, taxonomic confusion has occurred, with the name Nymphaea nouchali incorrectly applied to Nymphaea pubescens.

Iris qinghainica is a beardless iris in the genus Iris, in the subgenus Limniris and in the series Tenuifoliae of the genus. It is a rhizomatous herbaceous perennial, from China. It has grey green leaves, a very short stem and 1–2 blue or violet flowers.

References

  1. "Sacred Lotus". Encyclopædia Britannica. 4 May 2023.
  2. Janice Glimn-Lacy, Peter B. Kaufman, Botany Illustrated: Introduction to Plants, Major Groups, Flowering Plant Families, p. 79, 2006, Springer, google books
  3. Shen-Miller, J.; Schopf, J. W.; Harbottle, G.; Cao, R.-j.; Ouyang, S.; Zhou, K.-s.; Southon, J. R.; Liu, G.-h. (2002). "Long-living lotus: Germination and soil -irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring". American Journal of Botany. 89 (2): 236–47. doi:10.3732/ajb.89.2.236. PMID   21669732.
  4. 1 2 Pulok K. Mukherjee; Debajyoti Mukherjee; Amal K. Maji; S. Rai; Michael Heinrich (2010). "The sacred lotus (Nelumbo nucifera)– phytochemical and therapeutic profile". Journal of Pharmacy and Pharmacology. 61 (4): 407–422. doi: 10.1211/jpp.61.04.0001 . PMID   19298686. S2CID   85342386.
  5. 1 2 3 Yi Zhang; Xu Lu; Shaoxiao Zeng; Xuhui Huang; Zebin Guo; Yafeng Zheng; Yuting Tian; Baodong Zheng (2015). "Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: a review". Phytochem Rev. 14 (3): 321–334. Bibcode:2015PChRv..14..321Z. doi:10.1007/s11101-015-9401-9. S2CID   16527010.
  6. Hémardinquer, Jean-Jacques (August 1974). "Hakon Hjelmqvist, « A find of Nelumbo nucifera from old Cyprus with some notes on the history of the species », reprint from Botaniska Notiser, Lund, vol. 125, 1972, pp. 383–388". Annales. Histoire, Sciences Sociales. 29 (4): 968. doi:10.1017/S0395264900165321. ISSN   0395-2649. S2CID   165461309.
  7. Coneè., Kiple, Kenneth F., 1939-2016. Ornelas, Kriemhild (2000). The Cambridge world history of food. Cambridge University Press. p. 277. ISBN   0-511-46868-7. OCLC   852391634.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  8. Angiosperm Phylogeny Group (2016). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV". Botanical Journal of the Linnean Society. 181 (1): 1–20. doi: 10.1111/boj.12385 . ISSN   0024-4074.
  9. "Texas A and M University Bioinformatics Working Group : Cronquist System". Archived from the original on 2014-12-11. Retrieved 2018-09-25.
  10. "Nelumbo nucifera". Royal Botanic Gardens, Kew . Retrieved 11 June 2019.
  11. "Nelumbo nucifera – Gaertn". Plants for a Future . Retrieved 11 June 2019.
  12. Cook, Water Plants of the World (see below) loc. cit.
  13. 1 2 "Nelumbo nucifera | sacred lotus". Royal Horticultural Society. 1999. Retrieved 11 June 2019.
  14. <not recorded> (January 13, 1934). "<not recorded>". Gardener's Chronicle. 95 (third series) (<not recorded>): 28–29.
  15. Cook, Christopher D. K. (1974). Water Plants of the World. The Hague, Netherlands: W. Junk Publisher. p. 332.
  16. Hurley, Captain Frank (1924). Pearls and Savages. New York: G.P. Putnam's Sons. p. 385 plus photo and caption p. 368.
  17. Nitasaka, Eiji (n.d.). "Thousand Petals" . Retrieved September 1, 2021.[ permanent dead link ]
  18. <not stated> (July 25, 2007). "Ohmi-Myoren/ Rare Lotus- Flicker" . Retrieved September 1, 2021.
  19. Yoon, Carol Kaesuk (1996-10-01). "Heat of Lotus Attracts Insects And Scientists". The New York Times. Retrieved 2012-11-14.
  20. Thorington, Katherine K. (April 1999). "Pollination and Fruiting Success in the Eastern Skunk Cabbage". The Journal of Biospheric Science. 1 (1). Archived from the original on 2016-02-24. Retrieved 2022-02-02.
  21. Ong, H.C. (1996). "Nelumbo nucifera Gaertner". In Flach, M.; Rumawas, F. (eds.). Plant Resources of South-East Asia. Leiden, Netherlands: Backhuys Publishers. pp. 131–133. ISBN   90-73348-51-X.
  22. Shen-Miller; Mudgett, M. B.; William Schopf, J.; Clarke, S.; Berger, R.; et al. (1995). "Exceptional seed longevity and robust growth: Ancient sacred lotus from China". American Journal of Botany . 82 (11): 1367–1380. doi:10.2307/2445863. JSTOR   2445863.
  23. Shen-Miller, J. (2002). "Long-living lotus: germination and soil gamma-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring". American Journal of Botany . 89 (2): 236–247. doi:10.3732/ajb.89.2.236. PMID   21669732. Sacred lotus (Nelumbo nucifera) has been cultivated as a crop in Asia for thousands of years. A ≈1300-year-old lotus fruit, recovered from an originally cultivated but now dry lakebed in northeastern China, is the oldest germinated and directly 14C-dated fruit known. In 1996, we traveled to the dry lake at Xipaozi Village, China, the source of the old viable fruits.
  24. Ming, Ray; VanBuren, Robert; Liu, Yanling; Yang, Mei; Han, Yuepeng; et al. (2013). "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology. 14 (5): R41. doi: 10.1186/gb-2013-14-5-r41 . PMC   4053705 . PMID   23663246.
  25. "Sacred Lotus Genome Sequence Enlightens Scientists". Science Daily. 10 May 2013. Retrieved 13 May 2013.
  26. Wolpert, Stuart (10 May 2013). "Scientists sequence genome of 'sacred lotus,' which likely holds anti-aging secrets". UCLA Newsroom. Retrieved 13 May 2013.
  27. 1 2 Sou, S. Y.; Fujishige, N. (1995). "Cultivation comparison of lotus (Nelumbo nucifera) between China and Japan". Journal of Zhejiang Agricultural Sciences. 4: 187–189.
  28. 1 2 Dictionary of Gardening. Huxley, Anthony, 1920–1992., Griffiths, Mark, 1963–, Royal Horticultural Society. London: Macmillan Press. 1992. ISBN   978-0-333-47494-5. OCLC   25202760.{{cite book}}: CS1 maint: others (link)
  29. Phillips, Roger (1995). Vegetables . Rix, Martyn. London: Macmillan. ISBN   978-0-333-62640-5. OCLC   32465255.
  30. 1 2 3 4 5 6 Tian, Daike (2008). Container production and post-harvest handling of Lotus (Nelumbo) and Micropropagation of herbaceous Peony (Paeonia). Auburn: Auburn University.
  31. 1 2 Masuda, Junichiro; Urakawa, Toshihiro; Ozaki, Yukio; Okubo, Hiroshi (2006-01-01). "Short Photoperiod Induces Dormancy in Lotus (Nelumbo nucifera)". Annals of Botany. 97 (1): 39–45. doi:10.1093/aob/mcj008. PMC   2000761 . PMID   16287906.
  32. "Nelumbo nucifera Gaertn. | Plants of the World Online". Kew Science. Retrieved 2017-11-19.
  33. Tian, Daike; Tilt, Ken M.; Sibley, Jeff L.; Woods, Floyd M.; Dane, Fenny (2009-06-01). "Response of Lotus (Nelumbo nucifera Gaertn.) to Planting Time and Disbudding". HortScience. 44 (3): 656–659. doi: 10.21273/HORTSCI.44.3.656 .
  34. Kubitzki, Klaus; Rohwer, Jens G.; Bittrich, Volker (2011-01-28). Flowering plants, dicotyledons: magnoliid, hamamelid, and caryophyllid families. Kubitzki, Klaus, 1933-, Rohwer, J. G. (Jens G.), 1958–, Bittrich, V. (Volker), 1954–. Berlin. ISBN   978-3-642-08141-5. OCLC   861705944.{{cite book}}: CS1 maint: location missing publisher (link)
  35. Lim, T. K. (2016). "Nelumbo nucifera". Edible Medicinal and Non-Medicinal Plants. Springer, Cham. pp. 55–109. doi:10.1007/978-3-319-26062-4_5. ISBN   978-3-319-26061-7.
  36. 1 2 3 4 5 6 7 La-ongsri, Woranuch; Trisonthi, Chusie; Balslev, Henrik (2009-08-01). "Management and use of Nelumbo nucifera Gaertn. in Thai wetlands". Wetlands Ecology and Management. 17 (4): 279–289. Bibcode:2009WetEM..17..279L. doi:10.1007/s11273-008-9106-6. ISSN   0923-4861. S2CID   25530088.
  37. 1 2 3 4 5 6 7 8 Nguyen, Q.V.; Hicks, D.; Rural Industries Research and Development Corporation (Australia); Asian Foods Research and Development (2001). Exporting lotus to Asia : An agronomic and physiological study: a report for the Rural Industries Research and Development Corporation. Barton, A.C.T.: RIRDC. ISBN   978-0-642-58254-6. OCLC   52647644.
  38. 1 2 3 Kay, Daisy E. (1987). Root crops (2nd ed.). London: Tropical Development and Research Institute. ISBN   978-0-85954-200-5. OCLC   19298279.
  39. Deni., Bown (1995). Encyclopedia of herbs & their uses . Herb Society of America. (1st American ed.). London: Dorling Kindersley. ISBN   978-0-7894-0184-7. OCLC   32166152.
  40. 1 2 3 4 5 6 7 8 9 10 11 Guo, H. B. (2009-05-01). "Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China". Genetic Resources and Crop Evolution. 56 (3): 323–330. doi:10.1007/s10722-008-9366-2. ISSN   0925-9864. S2CID   19718393.
  41. Pann Rethea (22 March 2020). "Aussie artist turning pagoda flowers into art". Phenon Penh Post.
  42. "碗莲_碗莲的养殖方法" (in Chinese). Retrieved 2021-09-07.
  43. Du, Fengfeng; Liu, Xiaojing; Chang, Yajun; Li, Naiwei; Ding, Yuesheng; Yao, Dongrui (2021). "'Jiang Luopao': A Nelumbo Cultivar with Deep Purple-red and Bowl-shaped Flowers". HortScience. 56 (7): 847–848. doi: 10.21273/HORTSCI15757-21 . S2CID   236278282.
  44. Assessing lotus for wastewater bioremediation. Seymour, Evizel., Rural Industries Research and Development Corporation (Australia). Canberra: Rural Industries Research and Development Corp. 2009. ISBN   978-1-74151-888-7. OCLC   682913738.{{cite book}}: CS1 maint: others (link)
  45. , Andhra Bharati Dictionary; Lotus-root - అల్లిదుంప; అల్లికాయ.
  46. 1 2 3 YU, Xin; et al. (2002). "Progress in the Research on Post-harvest Physiology and Storage Techniques of Nelumbo nucifera gaertn [J]". Guangzhou Food Science and Technology. 3: 019.
  47. 1 2 Tian, N., et al. "Isolation and preparation of flavonoids from the leaves of Nelumbo nucifera Gaertn by preparative reversed-phase high-performance liquid chromatography." Se pu= Chinese journal of chromatography 25.1 (2007): 88–92.
  48. Su, X.; Jiang, Y.; Li, Y.; Lin, W. (2003). "Effects of 4-hexylresorcinol (4-HR) on browning and quality of fresh-cut lotus". Food Science. 24: 142–145.
  49. M.A. Rojas-Graüa, M.S. Tapiab, O. Martín-Bellosoa. Using polysaccharide-based edible coatings to maintain the quality of fresh-cut Fuji apples. LWT Food Science and Technology, 41 (2008), pp. 139–147
  50. "9 Nutritious Lotus Root Recipes To Try". Honest Food Talks. 12 December 2020.
  51. Tsuchiya, T.; Nohara, S. (1989). "Growth and life span of the leaves of Nelumbo nucifera Gaertn. in lake Kasumigaura, Japan". Aquatic Botany. 36 (1): 87–95. Bibcode:1989AqBot..36...87T. doi:10.1016/0304-3770(89)90094-6.
  52. Mukherjee PK. et al. Isolation, estimation and characterization of starch from rhizomes of Nelumbo nuciferaGaertn (Fam. Nymphaeaceae). Ind Drugs 1995; 32: 392–397.
  53. Mukherjee PK. et al. Pharmaceutical application of starch isolated from Nelumbo nucifera Gaertn. (Fam. Nymphaeaceae). Ind J Pharm Sci 1996; 58: 59–66.
  54. He, J; Cheng, W; Chen, X; Wen, S; Zhang, G; Xiong, G; Ye, L; Chen, Y (2006). "Study on the vacuum sublimation freezing-drying of lotus seeds". Hubei Agric Sci. 45: 240–244.
  55. Tian, Y; Zhang, Y; Zeng, S; Zheng, Y; Chen, F; Guo, Z; Lin, Y; Zheng, B (2012b). "Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology". Food Sci Technol Int. 18 (5): 477–488. doi:10.1177/1082013211433071. PMID   23144241. S2CID   42335541.
  56. Bhat, R; Sridhar, KR; Karim, AA; Young, CC; Arun, AB (2009). "Influence of c-radiation on the nutritional and functional qualities of lotus seed flour". J Agric Food Chem. 57 (20): 9524–9531. doi:10.1021/jf902287e. PMID   19778060.
  57. Wu C, Xia Y, Tang X (2013) Optimization of the fermentation process for lotus rice-wine production by response surface methodology. Mod Food Sci Technol 29:1675–1679
  58. 1 2 3 4 5 Zhang, Yi; Lu, Xu; Zeng, Shaoxiao; Huang, Xuhui; Guo, Zebin; Zheng, Yafeng; Tian, Yuting; Zheng, Baodong (2015). "Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review". Phytochemistry Reviews. 14 (3): 321. Bibcode:2015PChRv..14..321Z. doi:10.1007/s11101-015-9401-9. S2CID   16527010.
  59. 1 2 3 4 5 Thongchai Kanabkaew; Udomphon Puetpaiboon (2004). "Aquatic plants for domestic wastewater Treatment: Lotus (Nelumbo nucifera) and Hydrilla (Hydrilla verticillata) systems" (PDF). Songklanakarin J. Sci. Technol. 26.
  60. 1 2 H.M. Anawar; A. Garcia-Sanchez; M. Tari Kul Alam; M. Majibur Rahman (2008). "Phytofiltration of water polluted with arsenic and heavy metals". International Journal of Environment and Pollution. 33. doi:10.1504/IJEP.2008.0194 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  61. 1 2 3 4 Virendra Mishra (2009). "Accumulation of Cadmium and Copper from Aqueous Solutions using Indian Lotus (Nelumbo nucifera)". Ambio: A Journal of the Human Environment. 38 (2): 110–112. Bibcode:2009Ambio..38..110M. doi:10.1579/0044-7447-38.2.110. PMID   19431942. S2CID   43473128.
  62. 1 2 Gallego, S. M.; M. P. Benavides; M. L. Tomaro (1996). "Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress". Plant Science. 121 (2): 151–159. doi:10.1016/s0168-9452(96)04528-1.
  63. "Lotus care sheet". 16 December 2011.
  64. Liu, C.-Q. (December 2013). "Ecological restoration using Trapa bispinosa and Nelumbo nucifera on eutrophic water body in Baizangdian Lake". Wetland Science. 11 (4): 510–514.
  65. 1 2 3 4 Guo, H.B. (2009). "Cultivation of Lotus (Nelumbo nucifera Gaertn. spp. nucifera) and ist utilization in China". Genet Resour Crop Evol. 56 (3): 323–330. doi:10.1007/s10722-008-9366-2. S2CID   19718393.
  66. Shen-Miller, J.; Lindner, Petra; Xie, Yongming; Villa, Sarah; Wooding, Kerry; Clarke, Steven G.; Loo, Rachel R. O.; Loo, Joseph A. (2013-09-01). "Thermal-stable proteins of fruit of long-living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique". Tropical Plant Biology. 6 (2–3): 69. doi:10.1007/s12042-013-9124-2. ISSN   1935-9756. PMC   3869599 . PMID   24363819.
  67. Zi Xi, Lian (2011). "Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: a possible molecular mechanism". Eur. J. Pharmacol. 650 (1): 163–169. doi:10.1016/j.ejphar.2010.10.025. PMID   20969858.
  68. Wessling, Brianna (2023-08-19). "Lotus leaf-inspired sensors can detect minor pressure changes". The Robot Report. Retrieved 2023-11-06.
  69. "Lotus Leaf". The Times of India. ISSN   0971-8257 . Retrieved 2023-11-06.
  70. Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y.; Chen, Y. P.; Furukawa, H.; Itoigawa, M.; Fujioka, T.; Mihashi, K.; Cosentino, L. M.; Morris-Natschke, S. L.; Lee, K. H. (2005). "Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure–activity correlations with related alkaloids". Bioorganic & Medicinal Chemistry. 13 (2): 443–448. doi:10.1016/j.bmc.2004.10.020. PMID   15598565.
  71. Menéndez-Perdomo, Ivette M; Facchini, Peter J (November 2018). "Benzylisoquinoline Alkaloids Biosynthesis in Sacred Lotus". Molecules (Basel, Switzerland). 23 (11): E2899. doi: 10.3390/molecules23112899 . ISSN   1420-3049. PMC   6278464 . PMID   30404216.
  72. Menendez-Perdomo, I. M. and P. J. Facchini (2020). "Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera)." J Biol Chem 295(6): 1598–1612 doi:10.1074/jbc.RA119.011547 PMID   31914404
  73. United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels" . Retrieved 2024-03-28.
  74. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium (2019). Oria, Maria; Harrison, Meghan; Stallings, Virginia A. (eds.). Dietary Reference Intakes for Sodium and Potassium. The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC): National Academies Press (US). ISBN   978-0-309-48834-1. PMID   30844154.{{cite book}}: CS1 maint: multiple names: authors list (link)
  75. Khare CP. Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage, Botany, 1st edn. USA: Springer, 2004: 326–327.
  76. 1 2 Sridhar KR, Bhat R. Lotus: a potential nutraceutical source. J Agri Technol 2007; 3: 143–155.
  77. Ding, Hui; Shi, Jinghong; Wang, Ying; Guo, Jia; Zhao, Juhui; Dong, Lei (2011). "Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism". European Journal of Pharmacology. 650 (1): 163–169. doi:10.1016/j.ejphar.2010.10.025. PMID   20969858.
  78. 1 2 Mukherjee, Pulok K; Mukherjee, Debajyoti; Maji, Amal K; Rai, S; Heinrich, Michael (2009). "The sacred lotus(Nelumbo nucifera)- phytochemical and therapeutic profile". Journal of Pharmacy and Pharmacology. 61 (4): 407–22. doi: 10.1211/jpp.61.04.0001 . PMID   19298686. S2CID   85342386.
  79. Li, Z (2008). "Nutrient value and processing of lotus seed". Acad Period Agric Prod Process. 2008: 42–43.
  80. Zheng, B; Zheng, J; Zeng, S (2003). "Analysis of the nutritional compositionin chinese main lotus seed varieties". Acta Nutr Sin. 25: 153–156.
  81. Wu, J.; Zheng, Y.; Chen, T.; Yi, J.; Qin, L.; Rahman, K.; Lin, W. (2007). "Evaluation of the quality of lotus seed of Nelumbo nucifera Gaertn from outer space mutation". Food Chemistry. 105 (2): 540–547. doi:10.1016/j.foodchem.2007.04.011.
  82. Mukherjee, PK.; et al. (1998). "Pharmacognostical profiles of rhizomes of Nelumbo nucifera Gaertn". Ancient Sci Life. 17: 273–279.
  83. Mukherjee, PK; et al. (1996). "Antipyretic activity of Nelumbo nucifera rhizome extract". Ind J Exp Biol. 34 (3): 275–276. PMID   8781041.
  84. Mukherjee, PK; Das, J; Saha, K; Pal, M; Saha, BP (1996). "Diuretic activity of the rhizomes of Nelumbo nucifera Gaertn (Fam. Nymphaeaceae)". Phytother Res. 10 (5): 424–425. doi:10.1002/(sici)1099-1573(199608)10:5<424::aid-ptr857>3.3.co;2-v.
  85. Mukherjee, PK; Saha, K; Balasubramanian, R; Pal, M; Saha, BP (1996). "Studies on psychopharmacological effects of Nelumbo nucifera Gaertn. Rhizome extract". J Ethnopharmacol. 54 (2): 63–67. doi:10.1016/s0378-8741(96)01455-9. PMID   8953419.
  86. Mukherjee, K; Saha, K; Pal, M; Saha, B (1997). "Effect of Nelumbo nucifera rhizome extract on blood sugar level in rats". Journal of Ethnopharmacology. 58 (207–213): 207–13. doi:10.1016/s0378-8741(97)00107-4. PMID   9421256.
  87. Huralikuppi, JC; Christopher, AB; Stephen, P (1991). "Antidiabetic effect of Nelumbo nucifera (Gaertn): Part I Preliminary studies in rabbits". Phytother Res. 5 (2): 54–58. doi:10.1002/ptr.2650050203. S2CID   57700188.
  88. Mukherjee, P. K.; Das, J.; Saha, K.; Giri, S. N.; Pal, M.; Saha, B. P. (1996). "Antipyretic activity of Nelumbo nucifera rhizome extract". Indian Journal of Experimental Biology. 34 (3): 275–6. PMID   8781041.
  89. Wang, J; Zhang, G (2010). "The yield and chemical composition of lotus seed on different culture conditions". Hubei J TCM. 32: 75–76.
  90. Shad, MA; Nawaz, H; Siddique, F; Zahra, J; Mushtaq, A (2013). "Nutritional and functional characterization of seed kernel of lotus (Nelumbo nucifera): application of response surface methodology". Food Sci Technol Res. 19 (2): 163–172. doi: 10.3136/fstr.19.163 .
  91. Tang, P; Jiang, Z; Mei, C; Jiang, H (1998). "The composition, solubility and quality of lotus seed". J Beijing Norm Univ (Nat Sci). 34: 532–537.
  92. Zheng, B; Zheng, J; Zeng, C (2004). "Study on three functional components of Chinese main lotus seed varieties". Acta Nutr Sin. 26: 158–160.
  93. Zheng B, Zheng J, Zeng S (2003) Analysis of the nutritional composition in Chinese main lotus seed varieties. Acta Nutr Sin 25:153–156
  94. Wu J, Zheng Y, Chen T, Yi J, Qin L, Rahman K, Lin W (2007) Evaluation of the quality of lotus seed of Nelumbo nucifera Gaertn. from outer space mutation. Food Chem 105:540–547
  95. Xia Y (2012) Effect of germination on chemical and functional properties of lotus seeds. Food Sci 33:91–98
  96. "Nelumbo nucifera (sacred lotus)". Kew. Archived from the original on 30 May 2014. Retrieved 26 July 2015.
  97. The Encyclopedia of Christianity, Volume 5 by Erwin Fahlbusch. Wm. B. Eerdmans Publishing – 2008. p. 285. ISBN   978-0-8028-2417-2.
  98. "Bible Gateway passage: Job 40:21–22 – New International Version". Bible Gateway. Retrieved 2023-09-06.
  99. Jansen, Eva Rudy, The Book of Hindu Imagery: The Gods and their Symbols, p. 18, 1993, Binkey Kok Publications, ISBN   9074597076, 9789074597074, google books
  100. Krishan, Yuvrajmm, Tadikonda, Kalpana K., The Buddha Image: Its Origin and Development, pp. 65, 78, 1996, Bharatiya Vidya Bhavan, ISBN   8121505658, 9788121505659, google books
  101. Moore, Albert C., Klein, Charlotte, Iconography of Religions: An Introduction, p. 148, 1977, Chris Robertson, ISBN   0800604881, 9780800604882, google books
  102. Rodrigues, H, "The Sacred Lotus Symbol", Mahavidya, 2016
  103. Shakti, M. Gupta (1971). Plant Myths and Traditions in India. Netherlands: Brill Publishers. pp. 65–67.
  104. Virani, Shafique (2005-01-01). "Symphony of Gnosis: A Self-Definition of the Ismaili Ginan Literature". Reason and Inspiration in Islam: Theology, Philosophy and Mysticism in Muslim Thought: 507.