Cloud albedo

Last updated
NASA graphic representing the distribution of solar radiation NASA graphic representing the distribution of solar radiation.jpg
NASA graphic representing the distribution of solar radiation

Cloud albedo is a measure of the albedo or reflectivity of a cloud. Clouds regulate the amount of solar radiation absorbed by a planet and its solar surface irradiance. Generally, increased cloud cover correlates to a higher albedo and a lower absorption of solar energy. Cloud albedo strongly influences the Earth's energy budget, accounting for approximately half of Earth's albedo. [1] [2] Cloud albedo depends on the total mass of water, the size and shape of the droplets or particles and their distribution in space. [3] Thick clouds (such as stratocumulus) reflect a large amount of incoming solar radiation, translating to a high albedo. Thin clouds (such as cirrus) tend to transmit more solar radiation and, therefore, have a low albedo. Changes in cloud albedo caused by variations in cloud properties have a significant effect on global climate. [3]

Contents

Cloud condensation nuclei and cloud albedo

On a microscopic scale, clouds are formed through the condensation of water on cloud condensation nuclei. These nuclei are aerosols such as dust or sea salt but also include certain forms of pollution. [4] The size, concentration, structure, and chemical composition of these particles influence cloud albedo. [1] [5] For example, black carbon aerosol particles absorb more solar radiation and sulfate aerosols reflects more solar radiation. Smaller particles form smaller cloud droplets, which tend to decrease precipitation efficiency of a cloud and increasing cloud albedo. [1] Additionally, more cloud condensation nuclei increases the size of a cloud and the amount of reflected solar radiation. [5]

Causes of cloud albedo variation

Cloud albedo on a planet varies from less than 10% to more than 90% and depends on drop sizes, liquid water or ice content, thickness of the cloud, solar zenith angle, etc. [3]

Liquid Water Path

A cloud's liquid water path varies with changing cloud droplet size, which may alter the behavior of clouds and their albedo. [6] The variations of the albedo of typical clouds in the atmosphere are dominated by the column amount of liquid water and ice in the cloud. [7] The smaller the drops and the greater the liquid water content, the greater the cloud albedo, if all other factors are constant.

The Twomey Effect (Aerosol Indirect Effect)

Increased cloud droplet concentration and albedo due to aerosol effect Aerosol effect on cloud albedo.jpg
Increased cloud droplet concentration and albedo due to aerosol effect

The Twomey Effect is increased cloud albedo due to cloud nuclei from pollution. [8] Increasing aerosol concentration and aerosol density leads to higher cloud droplet concentration, smaller cloud droplets, and higher cloud albedo. [6] [7] In macrophysically identical clouds, a cloud with few larger drops will have a lower albedo than a cloud with more smaller drops. The smaller cloud particles similarly increase cloud albedo by reducing precipitation and prolonging the lifetime of a cloud. This subsequently increases cloud albedo as solar radiation is reflected over a longer period of time. The Albrecht Effect is the related concept of increased cloud lifetime from cloud nuclei. [5]

Zenith Angle

Cloud albedo increases with the total water content or depth of the cloud and the solar zenith angle. [7] The variation of albedo with zenith angle is most rapid when the sun is near the horizon, and least when the sun is overhead. Absorption of solar radiation by plane-parallel clouds decreases with increasing zenith angle because radiation that is reflected to space at the higher zenith angles penetrates less deeply into the cloud and is therefore less likely to be absorbed. [7]

Influence on global climate

Cloud albedo indirectly affects global climate through solar radiation scattering and absorption in Earth's radiation budget. [2] Variations in cloud albedo cause atmospheric instability that influences the hydrological cycle, weather patterns, and atmospheric circulation. [1] These effects are parameterized by cloud radiative forcing, a measure of short-wave and long-wave radiation in relation to cloud cover. The Earth Radiation Budget Experiment demonstrated that small variations in cloud coverage, structure, altitude, droplet size, and phase have significant effects on the climate. A five percent increase in short-wave reflection from clouds would counteract the greenhouse effect of the past two-hundred years. [1]

Cloud Albedo-Climate Feedback Loops

There are a variety of positive and negative cloud albedo-climate feedback loops in cloud and climate models. An exampled of a negative cloud-climate feedback loop is that as a planet warms, cloudiness increases, which increases a planet's albedo. An increase in albedo reduces absorbed solar radiation and leads to cooling. A counteracting positive feedback loop considers the rising of the high cloud layer, reduction in the vertical distribution of cloudiness, and decreased albedo. [9]

Air pollution can result in variation in cloud condensation nuclei, creating a feedback loop that influences atmospheric temperature, relative humility, and cloud formation depending on cloud and regional characteristics. For example, increased sulfate aerosols can reduce precipitation efficiency, resulting in a positive feedback loop in which decreased precipitation efficiency increases aerosol atmospheric longevity. [5] On the other hand, a negative feedback loop can be established in mixed-phase clouds in which black carbon aerosol can increase ice phase precipitation formation and reduce aerosol concentrations. [5]

Related Research Articles

<span class="mw-page-title-main">Albedo</span> Ratio of how much light is reflected back from a body

Albedo is the fraction of sunlight that is diffusely reflected by a body. It is measured on a scale from 0 to 1. Surface albedo is defined as the ratio of radiosity Je to the irradiance Ee received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time.

<span class="mw-page-title-main">Cloud feedback</span> Type of climate change feedback mechanism

Cloud feedback is a type of climate change feedback that has been difficult to quantify in climate models. Clouds can either amplify or dampen the effects of climate change by influencing Earth's energy balance. This is because clouds can affect the magnitude of climate change resulting from external radiative forcings. On the other hand, clouds can affect the magnitude of internally generated climate variability. Climate models represent clouds in different ways, and small changes in cloud cover in the models have a large impact on the predicted climate. Changes in cloud cover are closely coupled with other feedbacks, including the water vapor feedback and ice–albedo feedback.

<span class="mw-page-title-main">Aerosol</span> Suspension of fine solid particles or liquid droplets in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be generated from natural or human causes. The term aerosol commonly refers to the mixture of particulates in air, and not to the particulate matter alone. Examples of natural aerosols are fog, mist or dust. Examples of human caused aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, sprayed pesticides, and medical treatments for respiratory illnesses.

<span class="mw-page-title-main">Global dimming</span> Reduction in the amount of sunlight reaching Earths surface

Global dimming is a decline in the amount of sunlight reaching the Earth's surface, a measure also known as global direct solar irradiance. It was observed soon after the first systematic measurements of solar irradiance began in the 1950s, and this weakening of visible sunlight proceeded at the rate of 4–5% per decade until 1980s. Yet, solar activity did not vary more than the usual during this period. Instead, global dimming was due to an increase in atmospheric particulate matter, predominantly sulfate aerosols, as the result of rapidly growing air pollution due to post-war industrialization. Since the 1980s, a decrease in air pollution has led to a partial reversal of the dimming trend, sometimes referred to as global brightening. The reversal of dimming is not complete and varies worldwide. Brightening in developed countries during the 1980s and 1990s was offset by increased dimming in developing countries and by the expansion of the global shipping industry. During 2010s, air pollution mitigation in developing countries has also improved rapidly.

Nephology is the study of clouds and cloud formation. British meteorologist Luke Howard was a major researcher within this field, establishing a cloud classification system. While this branch of meteorology still exists today, the term nephology, or nephologist is rarely used. The term came into use at the end of the nineteenth century, and fell out of common use by the middle of the twentieth. Recently, interest in nephology has increased as some meteorologists have begun to focus on the relationship between clouds and global warming, which is a source of uncertainty regarding "estimates and interpretations of the Earth’s changing energy budget."

<span class="mw-page-title-main">Cloud condensation nuclei</span> Small particles on which water vapor condenses

Cloud condensation nuclei (CCNs), also known as cloud seeds, are small particles typically 0.2 µm, or one hundredth the size of a cloud droplet. CCNs are a unique subset of aerosols in the atmosphere on which water vapour condenses. This can affect the radiative properties of clouds and the overall atmosphere. Water vapour requires a non-gaseous surface to make the transition to a liquid; this process is called condensation.

<span class="mw-page-title-main">Cloud physics</span> Study of the physical processes in atmospheric clouds

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water, tiny crystals of ice, or both, along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

<span class="mw-page-title-main">Sea spray</span> Sea water particles that are formed directly from the ocean

Sea spray are aerosol particles formed from the ocean, mostly by ejection into Earth's atmosphere by bursting bubbles at the air-sea interface. Sea spray contains both organic matter and inorganic salts that form sea salt aerosol (SSA). SSA has the ability to form cloud condensation nuclei (CCN) and remove anthropogenic aerosol pollutants from the atmosphere. Coarse sea spray has also been found to inhibit the development of lightning in storm clouds.

In the physics of aerosols, deposition is the process by which aerosol particles collect or deposit themselves on solid surfaces, decreasing the concentration of the particles in the air. It can be divided into two sub-processes: dry and wet deposition. The rate of deposition, or the deposition velocity, is slowest for particles of an intermediate size. Mechanisms for deposition are most effective for either very small or very large particles. Very large particles will settle out quickly through sedimentation (settling) or impaction processes, while Brownian diffusion has the greatest influence on small particles. This is because very small particles coagulate in few hours until they achieve a diameter of 0.5 micrometres. At this size they no longer coagulate. This has a great influence in the amount of PM-2.5 present in the air.

<span class="mw-page-title-main">Climate system</span> Interactions that create Earths climate and may result in climate change

Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere, the lithosphere and the biosphere. Climate is the statistical characterization of the climate system. It represents the average weather, typically over a period of 30 years, and is determined by a combination of processes, such as ocean currents and wind patterns. Circulation in the atmosphere and oceans transports heat from the tropical regions to regions that receive less energy from the Sun. Solar radiation is the main driving force for this circulation. The water cycle also moves energy throughout the climate system. In addition, certain chemical elements are constantly moving between the components of the climate system. Two examples for these biochemical cycles are the carbon and nitrogen cycles.

<span class="mw-page-title-main">Twomey effect</span> Effect concerning the increase of solar radiation reflected by clouds

The Twomey effect describes how additional cloud condensation nuclei (CCN), possibly from anthropogenic pollution, may increase the amount of solar radiation reflected by clouds. This is an indirect effect by such particles, as distinguished from direct effects (forcing) due to enhanced scattering or absorbing radiation by such particles not in clouds.

<span class="mw-page-title-main">CLAW hypothesis</span> A hypothesised negative feedback loop connecting the marine biota and the climate

The CLAW hypothesis proposes a negative feedback loop that operates between ocean ecosystems and the Earth's climate. The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses act to stabilise the temperature of the Earth's atmosphere. The CLAW hypothesis was originally proposed by Robert Jay Charlson, James Lovelock, Meinrat Andreae and Stephen G. Warren, and takes its acronym from the first letter of their surnames.

<span class="mw-page-title-main">Marine cloud brightening</span> Proposed cloud-seeding technique

Marine cloud brightening also known as marine cloud seeding and marine cloud engineering is a proposed solar radiation management climate engineering technique that would make clouds brighter, reflecting a small fraction of incoming sunlight back into space in order to offset anthropogenic global warming. Along with stratospheric aerosol injection, it is one of the two solar radiation management methods that may most feasibly have a substantial climate impact. The intention is that increasing the Earth's albedo, in combination with greenhouse gas emissions reduction, carbon dioxide removal, and adaptation, would reduce climate change and its risks to people and the environment. If implemented, the cooling effect is expected to be felt rapidly and to be reversible on fairly short time scales. However, technical barriers remain to large-scale marine cloud brightening. There are also risks with such modification of complex climate systems.

<span class="mw-page-title-main">Stratospheric aerosol injection</span> Putting particles in the stratosphere to reflect sunlight to limit global heating

Stratospheric aerosol injection is a proposed method of solar geoengineering to reduce global warming. This would introduce aerosols into the stratosphere to create a cooling effect via global dimming and increased albedo, which occurs naturally from volcanic winter. It appears that stratospheric aerosol injection, at a moderate intensity, could counter most changes to temperature and precipitation, take effect rapidly, have low direct implementation costs, and be reversible in its direct climatic effects. The Intergovernmental Panel on Climate Change concludes that it "is the most-researched [solar geoengineering] methodagreement that it could limit warming to below 1.5 °C (2.7 °F)." However, like other solar geoengineering approaches, stratospheric aerosol injection would do so imperfectly and other effects are possible, particularly if used in a suboptimal manner.

The Albrecht effect describes how a larger density of cloud condensation nuclei (CCN), possibly from anthropogenic pollution, may increase cloud lifetime and hence increase the amount of solar radiation reflected from clouds. Because it does not directly interact with incoming or outgoing radiation, it has an indirect effect on climate.

<span class="mw-page-title-main">Ice nucleus</span>

An ice nucleus, also known as an ice nucleating particle (INP), is a particle which acts as the nucleus for the formation of an ice crystal in the atmosphere.

Brian Tinsley is a physicist who for more than 60 years has been actively researching atmospheric and space physics. He has been a professor of physics at the University of Texas at Dallas since 1976 and has served many national and international scientific organizations. He obtained his PhD from the University of Canterbury in New Zealand in November, 1963, for research on optical emissions from the upper atmosphere. With his wife, Beatrice Tinsley, later to become the first female astronomer at Yale University, he came to Dallas to work at the newly formed Southwest Center for Advanced Studies, which became the University of Texas at Dallas in 1969. They divorced in 1978, their adopted children Alan and Theresa remaining with him.

<span class="mw-page-title-main">Sea salt aerosol</span> Natural aerosol deriving from sea spray

Sea salt aerosol, which originally comes from sea spray, is one of the most widely distributed natural aerosols. Sea salt aerosols are characterized as non-light-absorbing, highly hygroscopic, and having coarse particle size. Some sea salt dominated aerosols could have a single scattering albedo as large as ~0.97. Due to the hygroscopy, a sea salt particle can serve as a very efficient cloud condensation nuclei (CCN), altering cloud reflectivity, lifetime, and precipitation process. According to the IPCC report, the total sea salt flux from ocean to atmosphere is ~3300 teragrams (Tg) per year.

<span class="mw-page-title-main">Cirrus cloud thinning</span> Proposed form of climate engineering

Cirrus cloud thinning (CCT) is a proposed form of climate engineering. Cirrus clouds are high cold ice that, like other clouds, both reflect sunlight and absorb warming infrared radiation. However, they differ from other types of clouds in that, on average, infrared absorption outweighs sunlight reflection, resulting in a net warming effect on the climate. Therefore, thinning or removing these clouds would reduce their heat trapping capacity, resulting in a cooling effect on Earth's climate. This could be a potential tool to reduce anthropogenic global warming. Cirrus cloud thinning is an alternative category of climate engineering, in addition to solar radiation management and greenhouse gas removal.

<span class="mw-page-title-main">North Atlantic Aerosols and Marine Ecosystems Study</span>

The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) was a five-year scientific research program that investigated aspects of phytoplankton dynamics in ocean ecosystems, and how such dynamics influence atmospheric aerosols, clouds, and climate. The study focused on the sub-arctic region of the North Atlantic Ocean, which is the site of one of Earth's largest recurring phytoplankton blooms. The long history of research in this location, as well as relative ease of accessibility, made the North Atlantic an ideal location to test prevailing scientific hypotheses in an effort to better understand the role of phytoplankton aerosol emissions on Earth's energy budget.

References

  1. 1 2 3 4 5 Kuniyal, Jagdish Chandra; Guleria, Raj Paul (2019). "The current state of aerosol-radiation interactions: A mini review". Journal of Aerosol Science. 130: 45–54. Bibcode:2019JAerS.130...45K. doi:10.1016/j.jaerosci.2018.12.010. ISSN   0021-8502. S2CID   104356406.
  2. 1 2 Mueller, Richard; Trentmann, Jörg; Träger-Chatterjee, Christine; Posselt, Rebekka; Stöckli, Reto (2011). "The Role of the Effective Cloud Albedo for Climate Monitoring and Analysis". Remote Sensing. 3 (11): 2305–2320. Bibcode:2011RemS....3.2305M. doi: 10.3390/rs3112305 . ISSN   2072-4292.
  3. 1 2 3 Hartmann, Dennis (2016). Global Physical Climatology. Australia: Elsevier. pp. 76–78. ISBN   978-0-12-328531-7.
  4. Hay, William W. (2016). Experimenting on a small planet: a history of scientific discoveries, a future of climate change and global warming (Second ed.). Switzerland: Springer. pp. 355–371. ISBN   978-3-319-27404-1.
  5. 1 2 3 4 5 Lohmann, U.; Feichter, J. (2005). "Global indirect aerosol effects: a review". Atmospheric Chemistry and Physics. 5: 715–737.
  6. 1 2 Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M. (1998). "Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCP". Journal of Climate. 11 (7): 1516–1528. Bibcode:1998JCli...11.1516H. doi: 10.1175/1520-0442(1998)011<1516:GSOTRO>2.0.CO;2 . ISSN   0894-8755.
  7. 1 2 3 4 Hartmann, Dennis (2016). Global Physical Climatology. Australia: Elsevier. pp. 76–78. ISBN   978-0-12-328531-7.
  8. Twomey, S. (1974). "Pollution and the Planetary Albedo". Atmospheric Environment. 8 (12): 1251–1256. Bibcode:1974AtmEn...8.1251T. doi:10.1016/0004-6981(74)90004-3.
  9. Wetherald, R. T.; Manabe, S. (1988). "Cloud Feedback Processes in a General Circulation Model". Journal of the Atmospheric Sciences. 45 (8): 1397–1416. Bibcode:1988JAtS...45.1397W. doi: 10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2 . ISSN   0022-4928.