Twomey effect

Last updated
Ship tracks can be seen as lines in these clouds over the Atlantic Ocean on the East Coast of the United States, an example of the Twomey effect. ShipTracks MODIS 2005may11.jpg
Ship tracks can be seen as lines in these clouds over the Atlantic Ocean on the East Coast of the United States, an example of the Twomey effect.

The Twomey effect describes how additional cloud condensation nuclei (CCN), possibly from anthropogenic pollution, may increase the amount of solar radiation reflected by clouds. This is an indirect effect (or radiative forcing) by such particles, as distinguished from direct effects (forcing) due to enhanced scattering or absorbing radiation by such particles not in clouds.

Contents

Cloud droplets normally form on aerosol particles that serve as CCN. Increasing the number density of CCN can lead to formation of more cloud droplets with a smaller size.

The increase in number density increases the optical depth of the cloud, which results in an increase in the cloud albedo making clouds appear whiter. Satellite imagery often shows trails of cloud, or of enhanced brightness of cloud, behind ocean-going ships due to this effect. The decrease in global mean absorption of solar radiation due to increases in CCN concentrations exerts a cooling influence on climate; the global average magnitude of this effect over the industrial era is estimated as between 0.3 and 1.8 W/m2. [1]

Derivation

Assume a uniform cloud that extends infinitely in the horizontal plane, also assume that the particle size distribution peaks near an average value of .

The formula for the optical depth of a cloud is

where is the optical depth, is cloud thickness, is the average particle size, and is the number density of cloud droplets.

The formula for the liquid water content of a cloud is

where is the density of water.

Taking our assumptions into account we can combine the previous two equations to yield

To derive the effect of changing while keeping , and constant, from the last equation we can write

and from the equation for we can write

therefore

This illustrates the Twomey Effect mathematically, that is, for a constant liquid water content, , increasing the number density of cloud droplets, , increases the optical depth of the cloud.

See also

Related Research Articles

<span class="mw-page-title-main">Optical depth</span> Physics concept

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

<span class="mw-page-title-main">Aerosol</span> Suspension of fine solid particles or liquid droplets in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. The term aerosol commonly refers to the particulate/air mixture, as opposed to the particulate matter alone. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogenic aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, steam from a kettle, sprayed pesticides, and medical treatments for respiratory illnesses. When a person inhales the contents of a vape pen or e-cigarette, they are inhaling an anthropogenic aerosol.

<span class="mw-page-title-main">Leidenfrost effect</span> Physical phenomenon

The Leidenfrost effect is a physical phenomenon in which a liquid, close to a surface that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this repulsive force, a droplet hovers over the surface, rather than making physical contact with it. The effect is named after the German doctor Johann Gottlob Leidenfrost, who described it in A Tract About Some Qualities of Common Water.

<span class="mw-page-title-main">Mie scattering</span> Scattering of an electromagnetic plane wave by a sphere

In electromagnetism, the Mie solution to Maxwell's equations describes the scattering of an electromagnetic plane wave by a homogeneous sphere. The solution takes the form of an infinite series of spherical multipole partial waves. It is named after German physicist Gustav Mie.

The area density of a two-dimensional object is calculated as the mass per unit area. The SI derived unit is the kilogram per square metre (kg·m−2). A related area number density can be defined by replacing mass in by number of particles or other countable quantity.

<span class="mw-page-title-main">Lawson criterion</span> Criterion for igniting a nuclear fusion chain reaction

The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production is higher than the rate of loss, the system will produce net energy. If enough of that energy is captured by the fuel, the system will become self-sustaining and is said to be ignited.

Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required. The present article is largely focused on the condition of radiative equilibrium.

<span class="mw-page-title-main">Jeans instability</span> Mechanism by which the collapse of interstellar gas clouds causes star formation

The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational collapse of a region filled with matter. It is named after James Jeans.

<span class="mw-page-title-main">Lattice Boltzmann methods</span> Class of computational fluid dynamics methods

The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

<span class="mw-page-title-main">Hayashi track</span> Luminosity–temperature relationship in stars

The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M in the pre-main-sequence phase of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi. On the Hertzsprung–Russell diagram, which plots luminosity against temperature, the track is a nearly vertical curve. After a protostar ends its phase of rapid contraction and becomes a T Tauri star, it is extremely luminous. The star continues to contract, but much more slowly. While slowly contracting, the star follows the Hayashi track downwards, becoming several times less luminous but staying at roughly the same surface temperature, until either a radiative zone develops, at which point the star starts following the Henyey track, or nuclear fusion begins, marking its entry onto the main sequence.

The Angstrom exponent or Ångström exponent or absorption Ångström exponent is a parameter that describes how the optical thickness of an aerosol typically depends on the wavelength of the light.

Radiation trapping, imprisonment of resonance radiation, radiative transfer of spectral lines, line transfer or radiation diffusion is a phenomenon in physics whereby radiation may be "trapped" in a system as it is emitted by one atom and absorbed by another.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

<span class="mw-page-title-main">Preferential concentration</span>

Preferential concentration is the tendency of dense particles in a turbulent fluid to cluster in regions of high strain due to their inertia. The extent by which particles cluster is determined by the Stokes number, defined as , where and are the timescales for the particle and fluid respectively; note that and are the mass densities of the fluid and the particle, respectively, is the kinematic viscosity of the fluid, and is the kinetic energy dissipation rate of the turbulence. Maximum preferential concentration occurs at . Particles with follow fluid streamlines and particles with do not respond significantly to the fluid within the times the fluid motions are coherent.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

<span class="mw-page-title-main">Sediment transport</span> Movement of solid particles, typically by gravity and fluid entrainment

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

In physics, the Lemaître–Tolman metric, also known as the Lemaître–Tolman–Bondi metric or the Tolman metric, is a Lorentzian metric based on an exact solution of Einstein's field equations; it describes an isotropic and expanding universe which is not homogeneous, and is thus used in cosmology as an alternative to the standard Friedmann–Lemaître–Robertson–Walker metric to model the expansion of the universe. It has also been used to model a universe which has a fractal distribution of matter to explain the accelerating expansion of the universe. It was first found by Georges Lemaître in 1933 and Richard Tolman in 1934 and later investigated by Hermann Bondi in 1947.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In quantum mechanics, the Redfield equation is a Markovian master equation that describes the time evolution of the reduced density matrix ρ of a strongly coupled quantum system that is weakly coupled to an environment. The equation is named in honor of Alfred G. Redfield, who first applied it, doing so for nuclear magnetic resonance spectroscopy. It is also known as the Redfield relaxation theory.

The Ellis drainhole is the earliest-known complete mathematical model of a traversable wormhole. It is a static, spherically symmetric solution of the Einstein vacuum field equations augmented by inclusion of a scalar field minimally coupled to the geometry of space-time with coupling polarity opposite to the orthodox polarity :

References

  1. IPCC 4th Assessment Report, 2005

Bibliography