Faint young Sun paradox

Last updated
Unsolved problem in astronomy:

How can the early Earth have had liquid water if the Sun's output is theorized to have been only 70% as intense as it is today?

Contents

The faint young Sun paradox or faint young Sun problem describes the apparent contradiction between observations of liquid water early in Earth's history and the astrophysical expectation that the Sun's output would be only 70 percent as intense during that epoch as it is during the modern epoch. [1] The paradox is this: with the young Sun's output at only 70 percent of its current output, early Earth would be expected to be completely frozen, but early Earth seems to have had liquid water [2] and supported life. [3]

The issue was raised by astronomers Carl Sagan and George Mullen in 1972. [4] Proposed resolutions of this paradox have taken into account greenhouse effects, changes to planetary albedo, astrophysical influences, or combinations of these suggestions. The predominant theory is that the greenhouse gas carbon dioxide contributed most to the warming of the Earth. [5]

Solar evolution

Evolution of the Sun's luminosity, radius and effective temperature compared to the present Sun. After Ribas (2010). Solar evolution (English).svg
Evolution of the Sun's luminosity, radius and effective temperature compared to the present Sun. After Ribas (2010).

Models of stellar structure, especially the standard solar model [7] predict a brightening of the Sun. The brightening is caused by a decrease in the number of particles per unit mass due to nuclear fusion in the Sun's core, from four protons and electrons each to one helium nucleus and two electrons. Fewer particles would exert less pressure. A collapse under the enormous gravity is prevented by an increase in temperature, which is both cause and effect of a higher rate of nuclear fusion.

More recent modeling studies have shown that the Sun is currently 1.4 times brighter today than it was 4.6 billion years ago (Ga), and that the brightening has accelerated considerably. [8] At the surface of the Sun, more fusion power means a higher solar luminosity (via slight increases in temperature and radius), which on Earth is termed radiative forcing.

Theories

Greenhouse gases

This conceptual graph shows the relationship between solar radiation and the greenhouse effect - in this case dominated by modulations in carbon dioxide. Early Earth - Solar and CO2 relationship.png
This conceptual graph shows the relationship between solar radiation and the greenhouse effect – in this case dominated by modulations in carbon dioxide.

Sagan and Mullen suggested during their descriptions of the paradox that it might be solved by high concentrations of ammonia gas, NH3. [4] However, it has since been shown that while ammonia is an effective greenhouse gas, it is easily destroyed photochemically in the atmosphere and converted to nitrogen (N2) and hydrogen (H2) gases. [9] It was suggested (again by Sagan) that a photochemical haze could have prevented this destruction of ammonia and allowed it to continue acting as a greenhouse gas during this time; [10] however, by 2001, this idea was tested using a photochemical model and discounted. [11] Furthermore, such a haze is thought to have cooled Earth's surface beneath it and counteracted the greenhouse effect.[ citation needed ] Around 2010, scholars at the University of Colorado revived the idea, arguing that the ammonia hypothesis is a viable contributor if the haze formed a fractal pattern. [12] [13]

It is now thought that carbon dioxide was present in higher concentrations during this period of lower solar radiation. It was first proposed and tested as part of Earth's atmospheric evolution in the late 1970s. An atmosphere that contained about 1,000 times the present atmospheric level (or PAL) was found to be consistent with the evolutionary path of Earth's carbon cycle and solar evolution. [14] [15] [16]

The primary mechanism for attaining such high CO2 concentrations is the carbon cycle. On large timescales, the inorganic branch of the carbon cycle, which is known as the carbonate–silicate cycle is responsible for determining the partitioning of CO2 between the atmosphere and the surface of Earth. In particular, during a time of low surface temperatures, rainfall and weathering rates would be reduced, allowing for the build-up of carbon dioxide in the atmosphere on timescales of 0.5 million years. [17]

Specifically, using 1-D models, which represent Earth as a single point (instead of something that varies across 3 dimensions) scientists have determined that at 4.5 Ga, with a 30% dimmer Sun, a minimum partial pressure of 0.1 bar of CO2 is required to maintain an above-freezing surface temperature; 10 bar of CO2 has been suggested as a plausible upper limit. [15] [18]

The amount of carbon dioxide levels is still under debate. In 2001, Sleep and Zahnle suggested that increased weathering on the sea floor on a young, tectonically active Earth could have reduced carbon dioxide levels. [19] Then in 2010, Rosing et al. analyzed marine sediments called banded iron formations and found large amounts of various iron-rich minerals, including magnetite (Fe3O4), an oxidized mineral alongside siderite (FeCO3), a reduced mineral and saw that they formed during the first half of Earth's history (and not afterward). The minerals' relative coexistence suggested an analogous balance between CO2 and H2. In the analysis, Rosing et al. connected the atmospheric H2 concentrations with regulation by biotic methanogenesis. Anaerobic, single-celled organisms that produced methane (CH4) may therefore have contributed to the warming in addition to carbon dioxide. [20] [21]

Tidal heating

The Moon was originally much closer to the Earth, which rotated faster than it does today, resulting in greater tidal heating than experienced today. Original estimates found that even early tidal heating would be minimal, perhaps 0.02 watts per square meter. (For comparison, the solar energy incident on the Earth's atmosphere is on the order of 1,000 watts per square meter.)

However, around 2021, a team led by René Heller in Germany argued that such estimates were simplistic and that in some plausible models tidal heating might have contributed on the order of 10 watts per square meter and increased the equilibrium temperature by up to five degrees Celsius on a timescale of 100 million years. Such a contribution would partially resolve the paradox but is insufficient to solve the faint young paradox on its own without additional factors such as greenhouse heating. [22] The underlying assumption of Moon's formation just outside of the Roche limit is not certain, however: a magnetized disk of debris could have transported angular momentum leading to a less massive Moon in a higher orbit. [23]

Cosmic rays

A minority view propounded by the Israeli-American physicist Nir Shaviv uses climatological influences of solar wind combined with a hypothesis of Danish physicist Henrik Svensmark for a cooling effect of cosmic rays. [24] According to Shaviv, the early Sun had emitted a stronger solar wind that produced a protective effect against cosmic rays. In that early age, a moderate greenhouse effect comparable to today's would have been sufficient to explain a largely ice-free Earth. Evidence for a more active early Sun has been found in meteorites. [25]

The temperature minimum around 2.4 Ga goes along with a cosmic ray flux modulation by a variable star formation rate in the Milky Way. The reduced solar impact later results in a stronger impact of cosmic ray flux, which is hypothesized to lead to a relationship with climatological variations.

Mass loss from Sun

It has been proposed several times that mass loss from the faint young Sun in the form of stronger solar winds could have compensated for the low temperatures from greenhouse gas forcing. [26] In this framework, the early Sun underwent an extended period of higher solar wind output. Based on exoplanetary data, this caused a mass loss from the Sun of 5−6 percent over its lifetime, [27] resulting in a more consistent level of solar luminosity (as the early Sun had more mass, resulting in more energy output than was predicted).

In order to explain the warm conditions in the Archean eon, this mass loss must have occurred over an interval of about one billion years. Records of ion implantation from meteorites and lunar samples show that the elevated rate of solar wind flux only lasted for a period of 100 million years. Observations of the young Sun-like star π1 Ursae Majoris match this rate of decline in the stellar wind output, suggesting that a higher mass loss rate cannot by itself resolve the paradox. [28] [29] [30]

Changes in clouds

If greenhouse gas concentrations did not compensate completely for the fainter Sun, the moderate temperature range may be explained by a lower surface albedo. At the time, a smaller area of exposed continental land would have resulted in fewer cloud condensation nuclei both in the form of wind-blown dust and biogenic sources. A lower albedo allows a higher fraction of solar radiation to penetrate to the surface. Goldblatt and Zahnle (2011) investigated whether a change in cloud fraction could have been sufficiently warming and found that the net effect was equally as likely to have been negative as positive. At most the effect could have raised surface temperatures to just above freezing on average. [31]

Another proposed mechanism of cloud cover reduction relates a decrease in cosmic rays during this time to reduced cloud fraction. [32] However, this mechanism does not work for several reasons, including the fact that ions do not limit cloud formation as much as cloud condensation nuclei, and cosmic rays have been found to have little impact on global mean temperature. [33] Clouds continue to be the dominant source of uncertainty in 3-D global climate models, and a consensus has yet to be reached on how changes in cloud spatial patterns and cloud type may have affected Earth's climate during this time. [34]

Local Hubble expansion

Although both simulations and direct measurements of effects of Hubble's law on gravitationally bound systems are returning inconclusive results as of 2022, [35] it was noted that orbital expansion with a fraction of local Hubble expansion rate may explain the observed anomalies in orbital evolution, including a faint young Sun paradox. [36]

Gaia hypothesis

The Gaia hypothesis holds that biological processes work to maintain a stable surface climate on Earth to maintain habitability through various negative feedback mechanisms. While organic processes, such as the organic carbon cycle, work to regulate dramatic climate changes, and that the surface of Earth has presumably remained habitable, this hypothesis has been criticized as intractable. Furthermore, life has existed on the surface of Earth through dramatic changes in climate, including Snowball Earth episodes. There are also strong and weak versions of the Gaia hypothesis, which has caused some tension in this research area. [34]

On other planets

Mars

Mars has its own version of the faint young Sun paradox. Martian terrains show clear signs of past liquid water on the surface, including outflow channels, gullies, modified craters, and valley networks. These geomorphic features suggest Mars had an ocean on its surface and river networks that resemble current Earth's during the late Noachian (4.1–3.7 Ga). [37] [38] It is unclear how Mars's orbital pattern, which places it even further from the Sun, and the faintness of the young Sun could have produced what is thought to have been a very warm and wet climate on Mars. [39] Scientists debate over which geomorphological features can be attributed to shorelines or other water flow markers and which can be ascribed to other mechanisms. [34] Nevertheless, the geologic evidence, including observations of widespread fluvial erosion in the southern highlands, are generally consistent with an early warm and semi-arid climate. [40]

Given the orbital and solar conditions of early Mars, a greenhouse effect would have been necessary to increase surface temperatures at least 65 K in order for these surface features to have been carved by flowing water. [39] [40] A much denser, CO2-dominated atmosphere has been proposed as a way to produce such a temperature increase. This would depend upon the carbon cycle and the rate of volcanism throughout the pre-Noachian and Noachian, which is not well known. Volatile outgassing is thought to have occurred during these periods. [39]

One way to ascertain whether Mars possessed a thick CO2-rich atmosphere is to examine carbonate deposits. A primary sink for carbon in Earth's atmosphere is the carbonate–silicate cycle. However it would have been difficult for CO2 to have accumulated in the Martian atmosphere in this way because the greenhouse effect would have been outstripped by CO2 condensation. [41]

A volcanically-outgassed CO2-H2 greenhouse is a plausible scenario suggested recently for early Mars. [42] Intermittent bursts of methane may have been another possibility. Such greenhouse gas combinations appear necessary because carbon dioxide alone, even at pressures exceeding a few bar, cannot explain the temperatures required for the presence of surface liquid water on early Mars. [43] [40]

Venus

Venus's atmosphere is composed of 96% carbon dioxide. Billions of years ago, when the Sun was 25 to 30% dimmer, Venus's surface temperature could have been much cooler, and its climate could have resembled current Earth's, complete with a hydrological cycle—before it experienced a runaway greenhouse effect. [44]

See also

Related Research Articles

<span class="mw-page-title-main">Causes of climate change</span> Effort to scientifically ascertain mechanisms responsible for recent global warming

The scientific community has been investigating the causes of climate change for decades. After thousands of studies, it came to a consensus, where it is "unequivocal that human influence has warmed the atmosphere, ocean and land since pre-industrial times." This consensus is supported by around 200 scientific organizations worldwide, The dominant role in this climate change has been played by the direct emissions of carbon dioxide from the burning of fossil fuels. Indirect CO2 emissions from land use change, and the emissions of methane, nitrous oxide and other greenhouse gases play major supporting roles.

<span class="mw-page-title-main">Greenhouse effect</span> Atmospheric phenomenon causing planetary warming

The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source as in the case of Jupiter, or from its host star as in the case of the Earth. In the case of Earth, the Sun emits shortwave radiation (sunlight) that passes through greenhouse gases to heat the Earth's surface. In response, the Earth's surface emits longwave radiation that is mostly absorbed by greenhouse gases. The absorption of longwave radiation prevents it from reaching space, reducing the rate at which the Earth can cool off.

<span class="mw-page-title-main">Climate variability and change</span> Change in the statistical distribution of climate elements for an extended period

Climate variability includes all the variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more. Climate change may refer to any time in Earth's history, but the term is now commonly used to describe contemporary climate change, often popularly referred to as global warming. Since the Industrial Revolution, the climate has increasingly been affected by human activities.

<span class="mw-page-title-main">Radiative forcing</span> Difference between solar irradiance absorbed by the Earth and energy radiated back to space

Radiative forcing is a concept used in climate science to quantify the change in energy balance in Earth's atmosphere. Various factors contribute to this change in energy balance, such as concentrations of greenhouse gases and aerosols, and changes in surface albedo and solar irradiance. In more technical terms, it is defined as "the change in the net, downward minus upward, radiative flux due to a change in an external driver of climate change." These external drivers are distinguished from feedbacks and variability that are internal to the climate system, and that further influence the direction and magnitude of imbalance. Radiative forcing on Earth is meaningfully evaluated at the tropopause and at the top of the stratosphere. It is quantified in units of watts per square meter, and often summarized as an average over the total surface area of the globe.

Planetary engineering is the development and application of technology for the purpose of influencing the environment of a planet. Planetary engineering encompasses a variety of methods such as terraforming, seeding, and geoengineering.

A runaway greenhouse effect will occur when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation which is asymptotically reached due to higher surface temperatures evaporating water into the atmosphere, increasing its optical depth. This positive feedback means the planet cannot cool down through longwave radiation and continues to heat up until it can radiate outside of the absorption bands of the water vapour.

The anti-greenhouse effect is a process that occurs when energy from a celestial object's sun is absorbed or scattered by the object's upper atmosphere, preventing that energy from reaching the surface, which results in surface cooling – the opposite of the greenhouse effect. In an ideal case where the upper atmosphere absorbs all sunlight and is nearly transparent to infrared (heat) energy from the surface, the surface temperature would be reduced by 16%, which is a significant amount of cooling.

<span class="mw-page-title-main">Atmosphere of Mars</span> Layer of gases surrounding the planet Mars

The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.85%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and noble gases. The atmosphere of Mars is much thinner and colder than Earth's having a max density 20g/m3 with a temperature generally below zero down to -60 Celsius. The average surface pressure is about 610 pascals (0.088 psi) which is less than 1% of the Earth's value.

<span class="mw-page-title-main">Terraforming of Venus</span> Engineering the global environment of Venus to make it suitable for humans

The terraforming of Venus or the terraformation of Venus is the hypothetical process of engineering the global environment of the planet Venus in order to make it suitable for human habitation. Adjustments to the existing environment of Venus to support human life would require at least three major changes to the planet's atmosphere:

  1. Reducing Venus's surface temperature of 737 K
  2. Eliminating most of the planet's dense 9.2 MPa (91 atm) carbon dioxide and sulfur dioxide atmosphere via removal or conversion to some other form
  3. The addition of breathable oxygen to the atmosphere.
<span class="mw-page-title-main">Atmosphere of Venus</span> Gas layer surrounding Venus

The atmosphere of Venus is the very dense layer of gasses surrounding the planet Venus. Venus's atmosphere is composed of 96.5% carbon dioxide and 3.5% nitrogen, with other chemical compounds present only in trace amounts. It is much denser and hotter than that of Earth; the temperature at the surface is 740 K, and the pressure is 93 bar (1,350 psi), roughly the pressure found 900 m (3,000 ft) under water on Earth. The atmosphere of Venus supports decks of opaque clouds of sulfuric acid that cover the entire planet, making optical Earth-based and orbital observation of the surface impossible. Information about surface topography has been obtained exclusively by radar imaging.

<span class="mw-page-title-main">Climate of Mars</span> Climate patterns of the planet Mars

The climate of Mars has been a topic of scientific curiosity for centuries, in part because it is the only terrestrial planet whose surface can be easily directly observed in detail from the Earth with help from a telescope.

<span class="mw-page-title-main">Carbon dioxide in Earth's atmosphere</span> Atmospheric constituent and greenhouse gas

In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of several greenhouse gases in the atmosphere of Earth. The current global average concentration of carbon dioxide (CO2) in the atmosphere is 421 ppm as of May 2022 (0.04%). This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century. The increase is due to human activity. Burning fossil fuels is the main cause of these increased CO2 concentrations and also the main cause of climate change. Other large sources of CO2 from human activities include cement production, deforestation, and biomass burning.

<span class="mw-page-title-main">Extraterrestrial atmosphere</span> Area of astronomical research

The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

<span class="mw-page-title-main">Carbonate–silicate cycle</span> Geochemical transformation of silicate rocks

The carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by metamorphism and volcanism. Carbon dioxide is removed from the atmosphere during burial of weathered minerals and returned to the atmosphere through volcanism. On million-year time scales, the carbonate-silicate cycle is a key factor in controlling Earth's climate because it regulates carbon dioxide levels and therefore global temperature.

<span class="mw-page-title-main">Greenhouse gas</span> Gas in an atmosphere that absorbs and emits radiation at thermal infrared wavelengths

Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F).

<span class="mw-page-title-main">History of climate change science</span> Aspect of the history of science

The history of the scientific discovery of climate change began in the early 19th century when ice ages and other natural changes in paleoclimate were first suspected and the natural greenhouse effect was first identified. In the late 19th century, scientists first argued that human emissions of greenhouse gases could change Earth's energy balance and climate. The existence of the greenhouse effect, while not named as such, was proposed as early as 1824 by Joseph Fourier. The argument and the evidence were further strengthened by Claude Pouillet in 1827 and 1838. In 1856 Eunice Newton Foote demonstrated that the warming effect of the sun is greater for air with water vapour than for dry air, and the effect is even greater with carbon dioxide.

<span class="mw-page-title-main">Future of Earth</span> Long-term extrapolated geological and biological changes of planet Earth

The biological and geological future of Earth can be extrapolated based on the estimated effects of several long-term influences. These include the chemistry at Earth's surface, the cooling rate of the planet's interior, the gravitational interactions with other objects in the Solar System, and a steady increase in the Sun's luminosity. An uncertain factor is the pervasive influence of technology introduced by humans, such as climate engineering, which could cause significant changes to the planet. For example, the current Holocene extinction is being caused by technology, and the effects may last for up to five million years. In turn, technology may result in the extinction of humanity, leaving the planet to gradually return to a slower evolutionary pace resulting solely from long-term natural processes.

<span class="mw-page-title-main">Life on Venus</span> Scientific assessments on the microbial habitability of Venus

The possibility of life on Venus is a subject of interest in astrobiology due to Venus' proximity and similarities to Earth. To date, no definitive evidence has been found of past or present life there. In the early 1960s, studies conducted via spacecraft demonstrated that the current Venusian environment is extreme compared to Earth's. Studies continue to question whether life could have existed on the planet's surface before a runaway greenhouse effect took hold, and whether a relict biosphere could persist high in the modern Venusian atmosphere.

<span class="mw-page-title-main">TRAPPIST-1c</span> Rocky exoplanet orbiting TRAPPIST-1

TRAPPIST-1c, also designated as 2MASS J23062928-0502285 c, is a mainly rocky exoplanet orbiting around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation Aquarius. It is the third most massive and third largest planet of the system, with about 131% the mass and 110% the radius of Earth. Its density indicates a primarily rocky composition, and observations by the James Webb Space Telescope announced in 2023 suggests against a thick CO2 atmosphere, however this does not exclude a thick abiotic oxygen-dominated atmosphere as is hypothesized to be common around red dwarf stars.

<span class="mw-page-title-main">Prebiotic atmosphere</span>

The prebiotic atmosphere is the second atmosphere present on Earth before today's biotic, oxygen-rich third atmosphere, and after the first atmosphere of Earth's formation. The formation of the Earth, roughly 4.5 billion years ago, involved multiple collisions and coalescence of planetary embryos. This was followed by a <100 million year period on Earth where a magma ocean was present, the atmosphere was mainly steam, and surface temperatures reached up to 8,000 K (14,000 °F). Earth's surface then cooled and the atmosphere stabilized, establishing the prebiotic atmosphere. The environmental conditions during this time period were quite different from today: the Sun was ~30% dimmer overall yet brighter at ultraviolet and x-ray wavelengths, there was a liquid ocean, it is unknown if there were continents but oceanic islands were likely, Earth's interior chemistry was different, and there was a larger flux of impactors hitting Earth's surface.

References

  1. Feulner, Georg (2012). "The faint young Sun problem". Reviews of Geophysics. 50 (2): RG2006. arXiv: 1204.4449 . Bibcode:2012RvGeo..50.2006F. doi:10.1029/2011RG000375. S2CID   119248267.
  2. Windley, B. (1984). The Evolving Continents . New York: Wiley Press. ISBN   978-0-471-90376-5.
  3. Schopf, J. (1983). Earth's Earliest Biosphere: Its Origin and Evolution . Princeton, N.J.: Princeton University Press. ISBN   978-0-691-08323-0.
  4. 1 2 Sagan, C.; Mullen, G. (1972). "Earth and Mars: Evolution of Atmospheres and Surface Temperatures". Science. 177 (4043): 52–56. Bibcode:1972Sci...177...52S. doi:10.1126/science.177.4043.52. PMID   17756316. S2CID   12566286.
  5. David Morrison, NASA Lunar Science Institute, "Catastrophic Impacts in Earth's History", video-recorded lecture, Stanford University (Astrobiology), 2010 Feb. 2, access 2016-05-10.
  6. Ribas, Ignasi (February 2010), "The Sun and stars as the primary energy input in planetary atmospheres", Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union, IAU Symposium, vol. 264, pp. 3–18, arXiv: 0911.4872 , Bibcode:2010IAUS..264....3R, doi:10.1017/S1743921309992298, S2CID   119107400.
  7. Abraham, Zulema; Iben, Icko (1971). "More Solar Models and Neutrino Fluxes". The Astrophysical Journal. 170: 157. Bibcode:1971ApJ...170..157A. doi: 10.1086/151197 .
  8. Baraffe, Isabelle; Homeier, Derek; Allard, France; Chabrier, Gilles (2015). "New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit". Astronomy & Astrophysics. 577: A42. arXiv: 1503.04107 . Bibcode:2015A&A...577A..42B. doi:10.1051/0004-6361/201425481. S2CID   67825852.
  9. Kuhn, W. R.; Atreya, S. K (1979). "Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth". Icarus. 37 (1): 207–213. Bibcode:1979Icar...37..207K. doi:10.1016/0019-1035(79)90126-X. hdl: 2027.42/23696 .
  10. Sagan, Carl; Chyba, Christopher (23 May 1997). "The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases". Science. 276 (5316): 1217–1221. Bibcode:1997Sci...276.1217S. doi:10.1126/science.276.5316.1217. PMID   11536805.
  11. Pavlov, Alexander; Brown, Lisa; Kasting, James (October 2001). "UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere". Journal of Geophysical Research: Planets. 106 (E10): 26267–23287. Bibcode:2001JGR...10623267P. doi:10.1029/2000JE001448.
  12. "A Fix for the "Faint Young Sun"". Sky & Telescope. 18 July 2013. Retrieved 9 May 2022.
  13. Wolf, E. T.; Toon, O. B. (4 June 2010). "Fractal Organic Hazes Provided an Ultraviolet Shield for Early Earth". Science. 328 (5983): 1266–1268. Bibcode:2010Sci...328.1266W. doi:10.1126/science.1183260. PMID   20522772. S2CID   206524004.
  14. Hart, M. H. (1978). "The evolution of the atmosphere of the EArth". Icarus. 33 (1): 23–39. Bibcode:1978Icar...33...23H. doi:10.1016/0019-1035(78)90021-0.
  15. 1 2 Walker, James C. G. (June 1985). "Carbon dioxide on the early earth" (PDF). Origins of Life and Evolution of the Biosphere. 16 (2): 117–127. Bibcode:1985OrLi...16..117W. doi:10.1007/BF01809466. hdl: 2027.42/43349 . PMID   11542014. S2CID   206804461 . Retrieved 2010-01-30.
  16. Pavlov, Alexander A.; Kasting, James F.; Brown, Lisa L.; Rages, Kathy A.; Freedman, Richard (May 2000). "Greenhouse warming by CH4 in the atmosphere of early Earth". Journal of Geophysical Research. 105 (E5): 11981–11990. Bibcode:2000JGR...10511981P. doi: 10.1029/1999JE001134 . PMID   11543544.
  17. Berner, Robert; Lasaga, Antonio; Garrels, Robert (1983). "The Carbonate–Silicate Geochemical Cycle and its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years". American Journal of Science. 283 (7): 641–683. Bibcode:1983AmJS..283..641B. doi: 10.2475/ajs.283.7.641 .
  18. Kasting, J. F.; Ackerman, T. P. (1986). "Climate consequences of very high CO2 levels in the Earth's early atmosphere". Science. 234 (4782): 1383–1385. Bibcode:1986Sci...234.1383K. doi:10.1126/science.11539665. PMID   11539665.
  19. Sleep, N.H.; Zahnle, K (2001). "Carbon dioxide cycling and implications for climate on ancient Earth". Journal of Geophysical Research: Planets. 106 (E1): 1373–1399. Bibcode:2001JGR...106.1373S. doi:10.1029/2000JE001247.
  20. Rosing, Minik; Bird, Dennis K; Sleep, Norman; Bjerrum, Christian J. (2010). "No climate paradox under the faint early Sun". Nature. 464 (7289): 744–747. Bibcode:2010Natur.464..744R. doi:10.1038/nature08955. PMID   20360739. S2CID   205220182.
  21. Kasting, James (2010). "Faint young Sun redux". Nature. 464 (7289): 687–9. doi:10.1038/464687a. PMID   20360727. S2CID   4395659.
  22. Heller, René; Duda, Jan-Peter; Winkler, Max; Reitner, Joachim; Gizon, Laurent (December 2021). "Habitability of the early Earth: liquid water under a faint young Sun facilitated by strong tidal heating due to a closer Moon". PalZ. 95 (4): 563–575. arXiv: 2007.03423 . Bibcode:2021PalZ...95..563H. doi:10.1007/s12542-021-00582-7. S2CID   244532427.
  23. Mullen, Patrick D.; Gammie, Charles F. (October 2020). "A Magnetized, Moon-forming Giant Impact". The Astrophysical Journal. 903 (1): L15. arXiv: 2010.04798 . Bibcode:2020ApJ...903L..15M. doi: 10.3847/2041-8213/abbffd . S2CID   222291370..
  24. Shaviv, N. J. (2003). "Toward a solution to the early faint Sun paradox: A lower cosmic ray flux from a stronger solar wind". Journal of Geophysical Research. 108 (A12): 1437. arXiv: astro-ph/0306477 . Bibcode:2003JGRA..108.1437S. doi:10.1029/2003JA009997. S2CID   11148141.
  25. Caffe, M. W.; Hohenberg, C. M.; Swindle, T. D.; Goswami, J. N. (February 1, 1987). "Evidence in meteorites for an active early sun". The Astrophysical Journal. 313: L31–L35. Bibcode:1987ApJ...313L..31C. doi:10.1086/184826. hdl: 2060/19850018239 .
  26. Minton, David; Malhotra, Renu (2007). "Assessing the Massive Young Sun Hypothesis to Solve the Warm Young Earth Puzzle". The Astrophysical Journal. 660 (2): 1700–1706. arXiv: astro-ph/0612321 . Bibcode:2007ApJ...660.1700M. doi:10.1086/514331. S2CID   14526617.
  27. Gurumath, Shashanka R.; Hiremath, K. M.; Ramasubramanian, V.; Acharyya, Kinsuk (2022), A possible solution for the faint young Sun paradox: Clues from the exoplanetary data, arXiv: 2204.07515
  28. Gaidos, Eric J.; Güdel, Manuel; Blake, Geoffrey A. (2000). "The faint young Sun paradox: An observational test of an alternative solar model" (PDF). Geophysical Research Letters. 27 (4): 501–504. Bibcode:2000GeoRL..27..501G. CiteSeerX   10.1.1.613.1511 . doi:10.1029/1999GL010740. PMID   11543273. S2CID   15264566.
  29. Wood, Bernard (2005). "New mass-loss measurements from astrospheric Ly alpha absorption". The Astrophysical Journal. 628 (2): L143–L146. arXiv: astro-ph/0506401 . Bibcode:2005ApJ...628L.143W. doi:10.1086/432716. S2CID   7137741.
  30. Wood, Bernard (2002). "Measured mass loss rates of solar-like stars as a function of age and activity". The Astrophysical Journal. 574 (1): 412–425. arXiv: astro-ph/0203437 . Bibcode:2002ApJ...574..412W. doi:10.1086/340797. S2CID   1500425.
  31. Goldblatt, C.; Zahnle, K. J. (2011). "Clouds and the Faint Young Sun Paradox". Climate of the Past. 6 (1): 203–220. arXiv: 1102.3209 . Bibcode:2011CliPa...7..203G. doi: 10.5194/cp-7-203-2011 . S2CID   54959670.
  32. Svensmark, Henrik (2007). "Cosmoclimatology: a new theory emerges". Astronomy & Geophysics. 48 (1): 14–28. Bibcode:2007A&G....48a..18S. doi: 10.1111/j.1468-4004.2007.48118.x .
  33. Krissansen-Totton, J.; Davies, R. (2013). "Investigation of cosmic ray–cloud connections using MISR". Geophysical Research Letters. 40 (19): 5240–5245. arXiv: 1311.1308 . Bibcode:2013GeoRL..40.5240K. doi:10.1002/grl.50996. S2CID   119299932.
  34. 1 2 3 Catling, David C.; Kasting, James F. (2017). Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge, UK: Cambridge University Press. ISBN   978-0-521-84412-3.
  35. Křížek, Michal; Gueorguiev, Vesselin G.; Maeder, André (2022), "An Alternative Explanation of the Orbital Expansion of Titan and Other Bodies in the Solar System", Gravitation and Cosmology, 28 (2): 122–132, arXiv: 2201.05311 , Bibcode:2022GrCo...28..122K, doi:10.1134/S0202289322020086, S2CID   245971372
  36. Dumin, Yurii V. (2016), LOCAL HUBBLE EXPANSION: CURRENT STATE OF THE PROBLEM, arXiv: 1609.01793
  37. Irwin, R. P.; Howard, Alan; Craddock, Robert; Moore, Jeffrey (2005). "An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development". Journal of Geophysical Research. 110 (E12): E12S15. Bibcode:2005JGRE..11012S15I. doi: 10.1029/2005JE002460 .
  38. Howard, Alan D.; Moore, Jeffrey M. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits". Journal of Geophysical Research. 110 (E12): E12S14. Bibcode:2005JGRE..11012S14H. doi: 10.1029/2005JE002459 .
  39. 1 2 3 Wordsworth, Robin D. (2016). "The Climate of Early Mars". Annual Review of Earth and Planetary Sciences. 44: 381–408. arXiv: 1606.02813 . Bibcode:2016AREPS..44..381W. doi:10.1146/annurev-earth-060115-012355. S2CID   55266519.
  40. 1 2 3 Ramirez, Ramirez R.; Craddock, Robert A. (2018). "The geological and climatological case for a warmer and wetter early Mars". Nature Geoscience. 11 (4): 230–237. arXiv: 1810.01974 . Bibcode:2018NatGe..11..230R. doi:10.1038/s41561-018-0093-9. S2CID   118915357.
  41. Haberle, R.; Catling, D.; Carr, M; Zahnle, K (2017). "The Early Mars Climate System". The Atmosphere and Climate of Mars. Cambridge, UK: Cambridge University Press. pp. 526–568. doi:10.1017/9781139060172.017. ISBN   9781139060172. S2CID   92991460.
  42. Ramirez, R. M.; Kopparapu, R.; Zugger, M. E.; Robinson, T. D.; Freedman, R.; Kasting, J. F. (2014). "Warming early Mars with CO2 and H2". Nature Geoscience. 7 (1): 59–63. arXiv: 1405.6701 . Bibcode:2014NatGe...7...59R. doi:10.1038/ngeo2000. S2CID   118520121.
  43. Wordsworth, Y.Kalugina; Lokshtanov, A.Vigasin; Ehlmann, J.Head; Sanders, H.Wang (2017). "Transient reducing greenhouse warming on early Mars". Geophysical Research Letters. 44 (2): 665–671. arXiv: 1610.09697 . Bibcode:2017GeoRL..44..665W. doi: 10.1002/2016GL071766 . S2CID   5295225.
  44. Kasting, J. F. (1988). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus". Icarus. 74 (3): 472–494. Bibcode:1988Icar...74..472K. doi:10.1016/0019-1035(88)90116-9. PMID   11538226.

Further reading