Gloeomargarita lithophora

Last updated

Gloeomargarita lithophora
Minerals-06-00010-g005b.png
Image of G. lithophora cells showing carbonate and polyphosphate inclusions taken using annular dark-field imaging (HAADF-STEM).
Scientific classification
Domain:
Phylum:
Order:
Gloeomargaritales
Family:
Gloeomargaritaceae
Genus:
Species:
G. lithophora
Binomial name
Gloeomargarita lithophora

Gloeomargarita lithophora, a cyanobacterium, is the proposed closest present day relative of all chloroplasts [1] (except for the independently evolved in the amoeboid Paulinella chromatophora ). The ancient relative of Gloeomargarita's was engulfed by a eukaryotic host in an endosymbiotic event around 1900-1400 million years ago. [2] [3] The origin of plastids by endosymbiosis signifies the beginning of photosynthesis in eukaryotes, [4] and as such their evolutionary relationship to Gloeomargarita lithophora, as the sister group, [3] is of high importance to the evolutionary history of endosymbiotic organelles and photosynthesis.

Contents

Description

G. lithophora was first isolated in 2007 from microbiolate samples taken from alkaline Lake Alchichica (Mexico). These samples were maintained in a lab aquarium and G. lithophora was isolated from biofilm that occurred within the aquarium. G. lithophora are gram-negative, unicellular rods with oxygenic photoautotrophic metabolism and gliding motility. They contain chlorophyll a and phycocyanin and photosynthetic thylakoids located peripherally. Cells are 1.1 μm wide and 3.9 μm long on average. Growth occurred in both liquid and solid BG-11 growth media, as well as in alkaline water. Optimal growth temperature is 25 °C and optimal growth pH is 8–8.5. [5]

Bioremediation

Some evidence suggests that Gloeomargarita lithophora could serve as a biological buffer to treat water contaminated with strontium, barium, or radioactive pollutants such as radium. This could be a useful application of bioremediation. [6] [7] [8]

References

  1. Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences. 114 (37): E7737 –E7745. Bibcode:2017PNAS..114E7737S. doi: 10.1073/pnas.1620089114 . ISSN   0027-8424. PMC   5603991 . PMID   28808007.
  2. Strassert, Jürgen F. H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (2021). "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids". Nature. 12 (1): 1879. Bibcode:2021NatCo..12.1879S. doi: 10.1038/s41467-021-22044-z . PMC   7994803 . PMID   33767194.
  3. 1 2 Betts, Holly C.; Puttick, Mark N.; Clark, James W.; Williams, Tom A.; Donoghue, Philip C. J.; Pisani, Davide (2018-08-20). "Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin". Nature Ecology & Evolution. 2 (10): 1556–1562. Bibcode:2018NatEE...2.1556B. doi:10.1038/s41559-018-0644-x. ISSN   2397-334X. PMC   6152910 . PMID   30127539.
  4. Gould, Sven B.; Waller, Ross F.; McFadden, Geoffrey I. (2008). "Plastid Evolution". Annual Review of Plant Biology. 59 (1): 491–517. Bibcode:2008AnRPB..59..491G. doi:10.1146/annurev.arplant.59.032607.092915. PMID   18315522.
  5. Moreira, David; Tavera, Rosaluz; Benzerara, Karim; Skouri-Panet, Fériel; Couradeau, Estelle; Gérard, Emmanuelle; Loussert Fonta, Céline; Novela, Eberto; Zivanovic, Yvan; López-García, Purificación (2017-04-01). "Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov". International Journal of Systematic and Evolutionary Microbiology. 67 (3): 653–658. doi:10.1099/ijsem.0.001679. PMC   5669459 . PMID   27902306.
  6. Blondeau, Marine; Benzerara, Karim; Ferard, Céline; Guigner, Jean-Michel; Poinsot, Mélanie; Coutaud, Margot; Tharaud, Mickaël; Cordier, Laure; Skouri-Panet, Fériel (20 April 2018). "Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba" . Chemical Geology. 483: 88–97. Bibcode:2018ChGeo.483...88B. doi:10.1016/j.chemgeo.2018.02.029. ISSN   0009-2541 . Retrieved 10 April 2020.
  7. Mehta, Neha; Bougoure, Jeremy; Kocar, Benjamin D.; Duprat, Elodie; Benzerara, Karim (2022-04-08). "Cyanobacteria Accumulate Radium ( 226 Ra) within Intracellular Amorphous Calcium Carbonate Inclusions" . ACS ES&T Water. 2 (4): 616–623. Bibcode:2022ACSEW...2..616M. doi:10.1021/acsestwater.1c00473. ISSN   2690-0637. S2CID   247456505.
  8. Mehta, Neha; Benzerara, Karim; Kocar, Benjamin D.; Chapon, Virginie (2019-11-05). "Sequestration of Radionuclides Radium-226 and Strontium-90 by Cyanobacteria Forming Intracellular Calcium Carbonates". Environmental Science & Technology. 53 (21): 12639–12647. Bibcode:2019EnST...5312639M. doi:10.1021/acs.est.9b03982. ISSN   0013-936X. PMID   31584265. S2CID   203661666.