Gloeomargarita lithophora

Last updated

Gloeomargarita lithophora
Minerals-06-00010-g005b.png
Image of G. lithophora cells showing carbonate and polyphosphate inclusions taken using annular dark-field imaging (HAADF-STEM).
Scientific classification
Domain:
Phylum:
Order:
Gloeomargaritales
Family:
Gloeomargaritaceae
Genus:
Species:
G. lithophora
Binomial name
Gloeomargarita lithophora

Gloeomargarita lithophora, a cyanobacterium, is the proposed closest present day relative of all chloroplasts [1] (except for the independently evolved in the amoeboid Paulinella chromatophora ). The ancient relative of Gloeomargarita's was engulfed by a eukaryotic host in a singule endosymbiotic event around 1900-1400 million years ago. [2] [3] The origin of plastids by endosymbiosis signifies the beginning of photosynthesis in eukaryotes, [4] and as such their evolutionary relationship to Gloeomargarita lithophora, as the sister group, [3] is of high importance to the evolutionary history of endosymbiotic organelles and photosynthesis.

Contents

Description

G. lithophora was first isolated in 2007 from microbiolate samples taken from alkaline Lake Alchichica (Mexico). These samples were maintained in a lab aquarium and G. lithophora was isolated from biofilm that occurred within the aquarium. G. lithophora are gram-negative, unicellular rods with oxygenic photoautotrophic metabolism and gliding motility. They contain chlorophyll a and phycocyanin and photosynthetic thylakoids located peripherally. Cells are 1.1 μm wide and 3.9 μm long on average. Growth occurred in both liquid and solid BG-11 growth media, as well as in alkaline water. Optimal growth temperature is 25 °C and optimal growth pH is 8–8.5. [5]

Bioremediation

Some evidence suggests that Gloeomargarita lithophora could serve as a biological buffer to treat water contaminated with strontium, barium, or radioactive pollutants such as radium. This could be a useful application of bioremediation. [6] [7] [8]

Related Research Articles

<span class="mw-page-title-main">Chloroplast</span> Plant organelle that conducts photosynthesis

A chloroplast is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules ATP and NADPH while freeing oxygen from water in the cells. The ATP and NADPH is then used to make organic molecules from carbon dioxide in a process known as the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in some unicellular algae, up to 100 in plants like Arabidopsis and wheat.

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Symbiogenesis</span> Evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells are descended from formerly free-living prokaryotes taken one inside the other in endosymbiosis. Mitochondria appear to be phylogenetically related to Rickettsiales bacteria, while chloroplasts are thought to be related to cyanobacteria.

<span class="mw-page-title-main">Cyanobacteria</span> Phylum of photosynthesising prokaryotes

Cyanobacteria, also called Cyanobacteriota or Cyanophyta, are a phylum of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" refers to their bluish green (cyan) color, which forms the basis of cyanobacteria's informal common name, blue-green algae, although as prokaryotes they are not scientifically classified as algae.

<span class="mw-page-title-main">Plastid</span> Plant cell organelles that perform photosynthesis and store starch

A plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. Plastids are considered to be intracellular endosymbiotic cyanobacteria.

<span class="mw-page-title-main">Glaucophyte</span> Division of algae

The glaucophytes, also known as glaucocystophytes or glaucocystids, are a small group of unicellular algae found in freshwater and moist terrestrial environments, less common today than they were during the Proterozoic. The stated number of species in the group varies from about 14 to 26. Together with the red algae (Rhodophyta) and the green algae plus land plants, they form the Archaeplastida.

<span class="mw-page-title-main">Thylakoid</span> Membrane enclosed compartments in chloroplasts and cyanobacteria

Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana. Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom, refined from the Chromalveolata, consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of eukaryotes

The green algae are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as a sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid (spherical), and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae, many of which live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<i>Geosiphon</i> Monotypic genus of photosynthetic, non-lichen fungi

Geosiphon is a genus of fungus in the family Geosiphonaceae. The genus is monotypic, containing the single species Geosiphon pyriformis, first described by Kützing in 1849 as Botrydium pyriforme. In 1915, Von Wettstein characterized Geosiphon pyriforme as a multinucleate alga containing endosymbiotic cyanobacteria, although he also noted the presence of chitin, a component of fungal cell walls. In 1933, Knapp was the first to suggest the fungal origin of the species and described it as a lichen with endosymbiotic cyanobacteria. It is the only member of the Glomeromycota known to not form a symbiosis with terrestrial plants in the form of arbuscular mycorrhiza.

An apicoplast is a derived non-photosynthetic plastid found in most Apicomplexa, including Toxoplasma gondii, and Plasmodium falciparum and other Plasmodium spp., but not in others such as Cryptosporidium. It originated from algae through secondary endosymbiosis; there is debate as to whether this was a green or red alga. The apicoplast is surrounded by four membranes within the outermost part of the endomembrane system. The apicoplast hosts important metabolic pathways like fatty acid synthesis, isoprenoid precursor synthesis and parts of the heme biosynthetic pathway.

<span class="mw-page-title-main">Photosynthetic reaction centre protein family</span>

Photosynthetic reaction centre proteins are main protein components of photosynthetic reaction centres (RCs) of bacteria and plants. They are transmembrane proteins embedded in the chloroplast thylakoid or bacterial cell membrane.

<i>Paulinella</i> Genus of single-celled organisms

Paulinella is a genus of at least eleven species including both freshwater and marine amoeboids. Like many members of euglyphids it is covered by rows of siliceous scales, and use filose pseudopods to crawl over the substrate of the benthic zone.

<span class="mw-page-title-main">Plant evolution</span> Subset of evolutionary phenomena that concern plants

Plant evolution is the subset of evolutionary phenomena that concern plants. Evolutionary phenomena are characteristics of populations that are described by averages, medians, distributions, and other statistical methods. This distinguishes plant evolution from plant development, a branch of developmental biology which concerns the changes that individuals go through in their lives. The study of plant evolution attempts to explain how the present diversity of plants arose over geologic time. It includes the study of genetic change and the consequent variation that often results in speciation, one of the most important types of radiation into taxonomic groups called clades. A description of radiation is called a phylogeny and is often represented by type of diagram called a phylogenetic tree.

<span class="mw-page-title-main">Eukaryote</span> Domain of life whose cells have nuclei

The eukaryotes constitute the domain of Eukarya or Eukaryota, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, and many unicellular organisms are eukaryotes. They constitute a major group of life forms alongside the two groups of prokaryotes: the Bacteria and the Archaea. Eukaryotes represent a small minority of the number of organisms, but given their generally much larger size, their collective global biomass is much larger than that of prokaryotes.

<span class="mw-page-title-main">Amorphous calcium carbonate</span>

Amorphous calcium carbonate (ACC) is the amorphous and least stable polymorph of calcium carbonate. ACC is extremely unstable under normal conditions and is found naturally in taxa as wide-ranging as sea urchins, corals, mollusks, and foraminifera. It is usually found as a monohydrate, holding the chemical formula CaCO3·H2O; however, it can also exist in a dehydrated state, CaCO3. ACC has been known to science for over 100 years when a non-diffraction pattern of calcium carbonate was discovered by Sturcke Herman, exhibiting its poorly-ordered nature.

<i>Crocosphaera watsonii</i> Species of bacterium

Crocosphaera watsonii is an isolate of a species of unicellular diazotrophic marine cyanobacteria which represent less than 0.1% of the marine microbial population. They thrive in offshore, open-ocean oligotrophic regions where the waters are warmer than 24 degrees Celsius. Crocosphaera watsonii cell density can exceed 1,000 cells per milliliter within the euphotic zone; however, their growth may be limited by the concentration of phosphorus. Crocosphaera watsonii are able to contribute to the oceanic carbon and nitrogen budgets in tropical oceans due to their size, abundance, and rapid growth rate. Crocosphaera watsonii are unicellular nitrogen fixers that fix atmospheric nitrogen to ammonia during the night and contribute to new nitrogen in the oceans. They are a major source of nitrogen to open-ocean systems. Nitrogen fixation is important in the oceans as it not only allows phytoplankton to continue growing when nitrogen and ammonium are in very low supply but it also replenishes other forms of nitrogen, thus fertilizing the ocean and allowing more phytoplankton growth.

A plastid is a membrane-bound organelle found in plants, algae and other eukaryotic organisms that contribute to the production of pigment molecules. Most plastids are photosynthetic, thus leading to color production and energy storage or production. There are many types of plastids in plants alone, but all plastids can be separated based on the number of times they have undergone endosymbiotic events. Currently there are three types of plastids; primary, secondary and tertiary. Endosymbiosis is reputed to have led to the evolution of eukaryotic organisms today, although the timeline is highly debated.

<span class="mw-page-title-main">Photoautotrophism</span> Organisms that use light and inorganic carbon to produce organic materials

Photoautotrophs are organisms that can utilize light energy from sunlight and elements from inorganic compounds to produce organic materials needed to sustain their own metabolism. Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.

References

  1. Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences. 114 (37): E7737–E7745. Bibcode:2017PNAS..114E7737S. doi: 10.1073/pnas.1620089114 . ISSN   0027-8424. PMC   5603991 . PMID   28808007.
  2. Strassert, Jürgen F. H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (2021). "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids". Nature. 12 (1): 1879. Bibcode:2021NatCo..12.1879S. doi: 10.1038/s41467-021-22044-z . PMC   7994803 . PMID   33767194.
  3. 1 2 Betts, Holly C.; Puttick, Mark N.; Clark, James W.; Williams, Tom A.; Donoghue, Philip C. J.; Pisani, Davide (2018-08-20). "Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin". Nature Ecology & Evolution. 2 (10): 1556–1562. doi:10.1038/s41559-018-0644-x. ISSN   2397-334X. PMC   6152910 . PMID   30127539.
  4. Gould, Sven B.; Waller, Ross F.; McFadden, Geoffrey I. (2008). "Plastid Evolution". Annual Review of Plant Biology. 59 (1): 491–517. doi:10.1146/annurev.arplant.59.032607.092915. PMID   18315522.
  5. Moreira, David; Tavera, Rosaluz; Benzerara, Karim; Skouri-Panet, Fériel; Couradeau, Estelle; Gérard, Emmanuelle; Loussert Fonta, Céline; Novela, Eberto; Zivanovic, Yvan; López-García, Purificación (2017-04-01). "Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov". International Journal of Systematic and Evolutionary Microbiology. 67 (3): 653–658. doi:10.1099/ijsem.0.001679. PMC   5669459 . PMID   27902306.
  6. Blondeau, Marine; Benzerara, Karim; Ferard, Céline; Guigner, Jean-Michel; Poinsot, Mélanie; Coutaud, Margot; Tharaud, Mickaël; Cordier, Laure; Skouri-Panet, Fériel (20 April 2018). "Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba". Chemical Geology. 483: 88–97. Bibcode:2018ChGeo.483...88B. doi:10.1016/j.chemgeo.2018.02.029. ISSN   0009-2541 . Retrieved 10 April 2020.
  7. Mehta, Neha; Bougoure, Jeremy; Kocar, Benjamin D.; Duprat, Elodie; Benzerara, Karim (2022-04-08). "Cyanobacteria Accumulate Radium ( 226 Ra) within Intracellular Amorphous Calcium Carbonate Inclusions". ACS ES&T Water. 2 (4): 616–623. doi:10.1021/acsestwater.1c00473. ISSN   2690-0637. S2CID   247456505.
  8. Mehta, Neha; Benzerara, Karim; Kocar, Benjamin D.; Chapon, Virginie (2019-11-05). "Sequestration of Radionuclides Radium-226 and Strontium-90 by Cyanobacteria Forming Intracellular Calcium Carbonates". Environmental Science & Technology. 53 (21): 12639–12647. Bibcode:2019EnST...5312639M. doi:10.1021/acs.est.9b03982. ISSN   0013-936X. PMID   31584265. S2CID   203661666.