Abietic acid

Last updated
Abietic acid
Abietic acid.svg
Abietic Acid.png
Names
IUPAC name
Abieta-7,13-dien-18-oic acid
Systematic IUPAC name
(1R,4aR,4bR,10aR)-1,4a-Dimethyl-7-(propan-2-yl)-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene-1-carboxylic acid
Other names
Abietinic acid; Sylvic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.436 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-173-3
KEGG
PubChem CID
RTECS number
  • TP8580000
UNII
  • InChI=1S/C20H30O2/c1-13(2)14-6-8-16-15(12-14)7-9-17-19(16,3)10-5-11-20(17,4)18(21)22/h7,12-13,16-17H,5-6,8-11H2,1-4H3,(H,21,22)/t16-,17+,19+,20+/m0/s1 Yes check.svgY
    Key: RSWGJHLUYNHPMX-ONCXSQPRSA-N Yes check.svgY
  • InChI=1/C20H30O2/c1-13(2)14-6-8-16-15(12-14)7-9-17-19(16,3)10-5-11-20(17,4)18(21)22/h7,12-13,16-17H,5-6,8-11H2,1-4H3,(H,21,22)/t16-,17+,19+,20+/m0/s1
    Key: RSWGJHLUYNHPMX-ONCXSQPRBK
  • O=C(O)[C@]3([C@@H]2C/C=C1/C=C(\CC[C@@H]1[C@@]2(C)CCC3)C(C)C)C
Properties
C20H30O2
Molar mass 302.458 g·mol−1
AppearanceYellow resinous powder, crystals or chunks. Monoclinic plates (from EtOH/water). Colorless solid when pure.
Density 1.06 g/mL
Melting point 172–175 °C (342–347 °F; 445–448 K) [1]
Boiling point 250 °C; 482 °F; 523 K
Insoluble [1]
Solubility in other solventsVery soluble in acetone, petroleum ether, Et2O, and ethanol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H317
P261, P272, P280, P302+P352, P321, P333+P313, P363, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Abietic acid (also known as abietinic acid or sylvic acid) is a diterpenoid found in coniferous trees. It is supposed to exist as a defend the host plant from insect attack or various wounds. Chemically, it is a complicated molecule featuring two alkene groups and a carboxylic acid within a chiral tricyclic framework. As the major component of rosin, it is a commercially important. Historically speaking, it was a major component of naval stores. It is the most common of the resin acids. Another common resin acid is pimaric acid, which converts to abietic acid upon heating.

Contents

Characteristics and occurrence

Abietic acid is found in rosin obtained from pine trees. [2] Pure abietic acid is a colorless solid, but commercial samples are usually a glassy or partly crystalline yellowish solid that melts at temperatures as low as 85 °C (185 °F). [3] Abietic acid is soluble in alcohols, acetone, and ethers. Its esters and salts are called an abietates, e.g. ethyl abietate and sodium abietate. [4]

The ancient presence of abietic acid (and other resin acids), being abundant and resilient, can inferred by analysis of rocks and archeological samples. Through the process of diagenesis, abietic acid changes into a collection of simpler compounds called abietanes.

Biosynthesis

Route from copalyl pyrophosphate to abietadiene , precursor to abietic acid (PP = pyrophosphate). AbietadieneBiosyn.svg
Route from copalyl pyrophosphate to abietadiene , precursor to abietic acid (PP = pyrophosphate).

Abietic acid is derived from the diterpene abietadiene, which in turn is made from copalyl pyrophosphate (CPP), which is derived from geranylgeranyl pyrophosphate ( GGPP), the precursor to many diterpenoids. In air and in the presence of certain cytochrome P450 enzymes, abietadiene is oxidized to abietic acid. An entire family of so-called resin acids form similarly. Together with abietic acid, these resin acids are a major portion of rosin, the solid portion of the oleoresin of coniferous trees.

Abietenes are synthesized from geranylgeranyl diphosphate via a copalyl diphosphate intermediate by class 2 diterpene cyclases and class 1 diterpene syntheses. Geranylgeranyl diphosphate to copalyl diphosphate mechanism from Peters 2010.svg
Abietenes are synthesized from geranylgeranyl diphosphate via a copalyl diphosphate intermediate by class 2 diterpene cyclases and class 1 diterpene syntheses.

The conformation of the GGPP molecule dictates the stereochemistry of the CPP intermediate after cyclization. The stereochemistry of the typical abietane skeleton suggests a GGPP precursor with its fused cyclohexyl rings in a chair-chair ("normal") conformation, although some abietanes with alternative stereochemistry may be cyclized from CCP isomers containing alternative combinations of boat and chair cyclohexane conformers. After the initial cyclization to CPP, which forms rings A and B in the abietane skeleton, the C ring is formed with the help of a class I diterpene synthase enzyme. Subsequent methyl migration and dehydrogenation steps yield the abietene isomers. [5]

Preparation

Abietic acid is extracted from tree rosin. Laboratory procedures illustrate the nature of the extraction, which is the basis of a substantial industry, formerly known as naval stores. [6]

Uses

As a component of rosin and one of the principal resin acid]]s, abietic acid has many uses, e.g. in some paints, soaps, foods, soldering flux,

Safety

Related Research Articles

<span class="mw-page-title-main">Resin</span> Organic polymer, typically from plants

A resin is a solid or highly viscous liquid that can be converted into a polymer. Resins may be biological or synthetic in origin, but are typically harvested from plants. Resins are mixtures of organic compounds, and predominantly terpenes. Well known resins include amber, hashish, frankincense, myrrh and the animal-derived resin, shellac. Resins are commonly used in varnishes, adhesives, food additives, incenses and perfumes.

<span class="mw-page-title-main">Turpentine</span> Liquid distilled from pine resin

Turpentine is a fluid obtained by the distillation of resin harvested from living trees, mainly pines. Principally used as a specialized solvent, it is also a source of material for organic syntheses.

Rosin, also known as colophony or Greek pitch (Latin: pix graeca), is a resinous material obtained from pine trees and other plants, mostly conifers. The primary components of rosin are diterpenoids, i.e., C20 carboxylic acids. Rosin consists mainly of resin acids, especially abietic acid. Rosin often appears as a semi-transparent, brittle substance that ranges in color from yellow to black and melts at stove-top temperatures.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical reducing agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

<span class="mw-page-title-main">Dihydrotestosterone</span> Human hormone

Dihydrotestosterone is an endogenous androgen sex steroid and hormone primarily involved in the growth and repair of the prostate and the penis, as well as the production of sebum and body hair composition.

Diterpenes are a class of terpenes composed of four isoprene units, often with the molecular formula C20H32. They are biosynthesized by plants, animals and fungi via the HMG-CoA reductase pathway, with geranylgeranyl pyrophosphate being a primary intermediate. Diterpenes form the basis for biologically important compounds such as retinol, retinal, and phytol. They are known to be antimicrobial and anti-inflammatory.

5α-Reductase Enzyme family

5α-Reductases, also known as 3-oxo-5α-steroid 4-dehydrogenases, are enzymes involved in steroid metabolism. They participate in three metabolic pathways: bile acid biosynthesis, androgen and estrogen metabolism. There are three isozymes of 5α-reductase encoded by the genes SRD5A1, SRD5A2, and SRD5A3.

<span class="mw-page-title-main">Limonene</span> Liquid terpene hydrocarbon fragrance and flavor, extract of citrus peel

Limonene is a colorless liquid aliphatic hydrocarbon classified as a cyclic monoterpene, and is the major component in the essential oil of citrus fruit peels. The (+)-isomer, occurring more commonly in nature as the fragrance of oranges, is a flavoring agent in food manufacturing. It is also used in chemical synthesis as a precursor to carvone and as a renewables-based solvent in cleaning products. The less common (-)-isomer has a piny, turpentine-like odor, and is found in the edible parts of such plants as caraway, dill, and bergamot orange plants.

Resin acid refers to any of several related carboxylic acids found in tree resins. Nearly all resin acids have the same basic skeleton: three fused rings having the empirical formula C19H29COOH. Resin acids occur in nature as tacky, yellowish gums consisting of several compounds. They are water-insoluble. A common resin acid is abietic acid. Resin acids are used to produce soaps for diverse applications, but their use is being displaced increasingly by synthetic acids such as 2-ethylhexanoic acid or petroleum-derived naphthenic acids.

<span class="mw-page-title-main">Pimaric acid</span> Chemical compound

Pimaric acid is a carboxylic acid that is classified as a resin acid. It is a major component of the rosin obtained from pine trees.

Tall oil, also called liquid rosin or tallol, is a viscous yellow-black odorous liquid obtained as a by-product of the kraft process of wood pulp manufacture when pulping mainly coniferous trees. The name originated as an anglicization of the Swedish tallolja. Tall oil is the third largest chemical by-product in a kraft mill after lignin and hemicellulose; the yield of crude tall oil from the process is in the range of 30–50 kg / ton pulp. It may contribute to 1.0–1.5% of the mill's revenue if not used internally.

<span class="mw-page-title-main">Ferruginol</span> Chemical compound

Ferruginol is a natural phenol with a terpenoid substructure. Specifically, it is a diterpene of the abietane chemical class, meaning it is characterized by three fused six-membered rings and alkyl functional groups. Ferruginol was first identified in 1939 by Brandt and Neubauer as the main component in the resin of the Miro tree and has since been isolated from other conifer species in the families Cupressaceae and Podocarpaceae. As a biomarker, the presence of ferruginol in fossils, mainly resin, is used to describe the density of these conifers in that particular biosphere throughout time.

<span class="mw-page-title-main">Taxodone</span> Chemical compound

Taxodone is a naturally occurring diterpenoid found in Taxodium distichum, Rosmarinus officinalis (rosemary), several salvia species and other plants, along with its oxidized rearrangement product, taxodione. Taxodone and taxodione exhibit anticancer, antibacterial, antioxidant, antifungal, insecticide, and antifeedant activities.

<span class="mw-page-title-main">Abietane</span> Chemical compound

Abietane is an organic compound with the formula C20H36. It is a tricyclic, saturated hydrocarbon with an elaborate stereochemistry. It is a colorless solid. It is of little biochemical interest except as a reference structure of the abietanes,

<span class="mw-page-title-main">Levopimaric acid</span> Chemical compound

Levopimaric acid is an abietane-type of diterpene resin acid. It is a major constituent of pine oleoresin with the chemical formula of C20H30O2. In general, the abietene types of diterpene resin acid have various biological activities, such as antibacterial, cardiovascular and antioxidant. Levopimaric acid accounts for about 18 to 25% of pine oleoresin. The production of oleoresin by conifer species is an important component of the defense response against insect attack and fungal pathogen infection.

This article is about the discovery and development of 5α-reductase inhibitors (5-ARIs), also known as dihydrotestosterone (DHT) blockers.

Spruce resin salve is a traditional wound treatment method that has gained new popularity again after clinical studies in the 21st century. The pure coniferous resin from Norway spruce is antimicrobial against a wide range of bacteria and fungi and positively associates with progressive healing of the wound. The improvement is not limited to the healing of the infected wounds only, suggesting that the resin has positive influences on mechanisms that play a role in wound repair.

<span class="mw-page-title-main">Sugiol</span> Chemical compound

Sugiol is a phenolic abietane derivative of ferruginol and can be used as a biomarker for specific families of conifers. The presence of sugiol can be used to identify the Cupressaceae s.1., podocarpaceae, and Araucaraiaceae families of conifers. The polar terpenoids are among the most resistant molecules to degradation besides n-alkanes and fatty acids, affording them high viability as biomarkers due to their longevity in the sedimentary record. Significant amounts of sugiol has been detected in fossil wood dated to the Eocene and Miocene periods, as well as a sample of Protopodocarpoxylon dated to the middle Jurassic.

<span class="mw-page-title-main">Palustric acid</span> Chemical compound

Palustric acid is an organic compound with the formula C20H30O2. It is classified as a diterpenoid and a resin acid. Palustric acid is an isomer of abietic acid: the location of the two C=C bonds differ in these two compounds. It is a colorless solid that is soluble in polar organic solvents. In terms of biological function palustric acid protects its host trees, especially conifers, against insects, an example of plant defense against herbivory. It is biosynthesized from the C20 precursor geranylgeranyl diphosphate.

References

  1. 1 2 Merck Index , 12th Edition, 3. Abietic Acid
  2. "Abietic Acid". Dr. Duke's Phytochemical and Ethnobotanical Databases. Archived from the original on 2015-09-23. Retrieved 13 January 2012.
  3. Hoiberg, Dale H., ed. (2010). "abietic acid" . Encyclopædia Britannica. Vol. I: A-ak Bayes (15th ed.). Chicago, Illinois: Encyclopædia Britannica Inc. pp.  32. ISBN   978-1-59339-837-8.
  4. 1 2 Lars-Hugo Norlin "Tall Oil" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a26_057
  5. 1 2 Peters, Reuben J. (2010). "Two rings in them all: The labdane-related diterpenoids". Natural Product Reports. 27 (11): 1521–1530. doi:10.1039/c0np00019a. ISSN   0265-0568. PMC   3766046 . PMID   20890488.
  6. G. C. Harris and T. F. Sanderson (1963). "Abietic Acid". Organic Syntheses . 32: 1. doi:10.15227/orgsyn.032.0001 .
  7. Nutrition, Center for Food Safety and Applied (2022-08-25). "Food Additive Status List". FDA.
  8. El Sayed, F; Manzur, F; Bayle, P; Marguery, MS; Bazex, J (1995). "Contact urticaria from abietic acid". Contact Dermatitis. 32 (6): 361–2. doi:10.1111/j.1600-0536.1995.tb00628.x. PMID   7554886. S2CID   36139468.
  9. Hausen, BM; Krohn, K; Budianto, E (1990). "Contact allergy due to colophony (VII). Sensitizing studies with oxidation products of abietic and related acids". Contact Dermatitis. 23 (5): 352–8. doi:10.1111/j.1600-0536.1990.tb05171.x. PMID   2096024. S2CID   34726630.
  10. Seong-Soo Roh, Moon-Ki Park and Yong-ung Kim (2010). "Abietic Acid from Resina Pini of Pinus Species as a Testosterone 5α-Reductase Inhibitor". J. Health Sci. 56 (4): 451–455. doi: 10.1248/jhs.56.451 .