Battery leakage is the escape of chemicals, such as electrolytes, within an electric battery due to generation of pathways to the outside environment caused by factory or design defects, excessive gas generation, or physical damage to the battery. The leakage of battery chemical often causes destructive corrosion to the associated equipment and may pose a health hazard. [1]
Zinc–carbon batteries were the first commercially available battery type and are still somewhat frequently used, although they have largely been replaced by the similarly composed alkaline battery. Like the alkaline battery, the zinc–carbon battery contains manganese dioxide and zinc electrodes. Unlike the alkaline battery, the zinc–carbon battery uses ammonium chloride as the electrolyte (zinc chloride in the case of "heavy-duty" zinc–carbon batteries), which is acidic.
Either when it has been completely consumed or after three to five years from its manufacture (its shelf life), [2] a zinc–carbon battery is prone to leaking. The byproducts of the leakage may include manganese hydroxide, zinc ammonium chloride, ammonia, zinc chloride, zinc oxide, water and starch. This combination of materials is corrosive to metals, such as those of the battery contacts and surrounding circuitry. [3]
Anecdotal evidence suggests that zinc–carbon battery leakage can be effectively cleaned with sodium bicarbonate (baking soda). [4]
Alkaline batteries use manganese dioxide and zinc electrodes with an electrolyte of potassium hydroxide. The alkaline battery gets its name from the replacement of the acidic ammonium chloride of zinc–carbon batteries with potassium hydroxide, which is an alkaline. Alkaline batteries are considerably more efficient, more environmentally friendly, and more shelf-stable than zinc–carbon batteries—five to ten years, when stored room temperature. [2] Alkaline batteries largely replaced zinc–carbon batteries in regular use by 1990. [5]
After an alkaline battery has been spent, or as it reaches the ends of its shelf life, the chemistry of its cells change, and hydrogen gas is generated as a byproduct. [3] When enough pressure has been built up internally, the casing splits at the bases or side (or both), releasing manganese oxide, zinc oxide, potassium hydroxide, zinc hydroxide, and manganese hydroxide. [6]
Alkaline battery leakage can be effectively neutralized with lemon juice or distilled white vinegar. [7] Eye protection and rubber gloves should be worn, as the potassium hydroxide electrolyte is caustic. [8]
Nickel–cadmium batteries (Ni-Cd) use nickel oxide hydroxide and metallic cadmium electrodes with an electrolyte of potassium hydroxide. Sealed Ni-Cd batteries were widely used in photography equipment, handheld power tools, and radio-controlled toys from the early 1940s until the early 1990s, when nickel–metal hydride batteries supplanted them (like how alkaline batteries replaced zinc–carbon batteries). In personal computers, Ni-Cd batteries first saw use in the mid-1980s as a cheaper alternative to lithium batteries for powering real-time clocks and preserving BIOS settings. Nickel–cadmium batteries were also briefly used in laptop battery packs, until the advent of commercially viable nickel–metal hydride batteries in the early 1990s. [9] Ni-Cd batteries are still used in some uninterruptible power supplies and emergency lighting setups.
Except in aeronautical or other high-risk applications, Ni-Cd batteries are intentionally not hermetically sealed and include pressure vents for safety if the batteries are charged improperly. With age and sufficient thermal cycles the seal will degrade and allow electrolyte to leak through. [10] The leakage usually travels down the positive and/or negative terminals onto any surrounding circuitry (see the top image).
Like with alkaline battery leakage, Ni-Cd leakage can be effectively neutralized with lemon juice or distilled white vinegar. [7]
Nickel–metal hydride batteries (Ni-MH) largely replaced Ni-Cd batteries in the early 1990s. [9] They replaced the metallic cadmium electrode with a hydrogen-absorbing alloy, allowing it to have over two times the capacity of Ni-Cd batteries while being easier to recycle. Their heyday in computer equipment was in the early- to mid-1990s. By 1995, most motherboard manufacturers switched to non-rechargeable lithium button cells to keep the BIOS chip powered. [11] Lithium-based battery packs replaced Ni-MH packs in all but the lowest-end laptops by the early 2000s. [12]
The practical shelf life of a Ni-MH is roughly five years. Cylindrical jelly-roll Ni-MH cells, like the ones used in 1990s laptop battery packs, discharge at a rate of up to 2% per day, while button cells like the ones used in motherboard batteries discharge at a rate of less than 20% per month. [13] They are said to leak less frequently than alkaline batteries but have a similar failure mode. [14]
Ni-MH leakage can be effectively neutralized with lemon juice or distilled white vinegar. [7]
In the United States in 1964, the Federal Trade Commission proscribed the use of the word leakproof or the phrase "guaranteed leakproof" in advertisements for or on the packages of dry-cell batteries, as they had determined that no manufacturer had yet developed a battery that was truly impervious to leaking. [15] [16] The FTC repealed this ban in 1997. [15]
A nickel–metal hydride battery is a type of rechargeable battery. The chemical reaction at the positive electrode is similar to that of the nickel-cadmium cell (NiCd), with both using nickel oxide hydroxide (NiOOH). However, the negative electrodes use a hydrogen-absorbing alloy instead of cadmium. NiMH batteries can have two to three times the capacity of NiCd batteries of the same size, with significantly higher energy density, although only about half that of lithium-ion batteries.
The nickel–cadmium battery is a type of rechargeable battery using nickel oxide hydroxide and metallic cadmium as electrodes. The abbreviation Ni–Cd is derived from the chemical symbols of nickel (Ni) and cadmium (Cd): the abbreviation NiCad is a registered trademark of SAFT Corporation, although this brand name is commonly used to describe all Ni–Cd batteries.
A rechargeable battery, storage battery, or secondary cell, is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from button cells to megawatt systems connected to stabilize an electrical distribution network. Several different combinations of electrode materials and electrolytes are used, including lead–acid, zinc–air, nickel–cadmium (NiCd), nickel–metal hydride (NiMH), lithium-ion (Li-ion), lithium iron phosphate (LiFePO4), and lithium-ion polymer.
Manganese dioxide is the inorganic compound with the formula MnO
2. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for MnO
2 is for dry-cell batteries, such as the alkaline battery and the zinc–carbon battery. MnO
2 is also used as a pigment and as a precursor to other manganese compounds, such as KMnO
4. It is used as a reagent in organic synthesis, for example, for the oxidation of allylic alcohols. MnO
2 has an α-polymorph that can incorporate a variety of atoms in the "tunnels" or "channels" between the manganese oxide octahedra. There is considerable interest in α-MnO
2 as a possible cathode for lithium-ion batteries.
An alkaline battery is a type of primary battery where the electrolyte has a pH value above 7. Typically these batteries derive energy from the reaction between zinc metal and manganese dioxide.
A dry cell is a type of electric battery, commonly used for portable electrical devices. Unlike wet cell batteries, which have a liquid electrolyte, dry cells use an electrolyte in the form of a paste, and are thus less susceptible to leakage.
The AA battery is a standard size single cell cylindrical dry battery. The IEC 60086 system calls the size R6, and ANSI C18 calls it 15. It is named UM-3 by JIS of Japan. Historically, it is known as D14, U12 – later U7, or HP7 in official documentation in the United Kingdom, or a pen cell.
A zinc–carbon battery (or carbon zinc battery in U.S. English) is a dry cell primary battery that provides direct electric current from the electrochemical reaction between zinc (Zn) and manganese dioxide (MnO2) in the presence of an ammonium chloride (NH4Cl) electrolyte. It produces a voltage of about 1.5 volts between the zinc anode, which is typically constructed as a cylindrical container for the battery cell, and a carbon rod surrounded by a compound with a higher Standard electrode potential (positive polarity), known as the cathode, that collects the current from the manganese dioxide electrode. The name "zinc-carbon" is slightly misleading as it implies that carbon is acting as the oxidizing agent rather than the manganese dioxide.
A mercury battery is a non-rechargeable electrochemical battery, a primary cell. Mercury batteries use a reaction between mercuric oxide and zinc electrodes in an alkaline electrolyte. The voltage during discharge remains practically constant at 1.35 volts, and the capacity is much greater than that of a similarly sized zinc-carbon battery. Mercury batteries were used in the shape of button cells for watches, hearing aids, cameras and calculators, and in larger forms for other applications.
A nickel–zinc battery is a type of rechargeable battery similar to nickel–cadmium batteries, but with a higher voltage of 1.6 V.
A rechargeable alkaline battery, also known as alkaline rechargeable or rechargeable alkaline manganese (RAM), is a type of alkaline battery that is capable of recharging for repeated use. The formats include AAA, AA, C, D, and snap-on 9-volt batteries. Rechargeable alkaline batteries are manufactured fully charged and have the ability to hold their charge for years, longer than nickel-cadmium and nickel-metal hydride batteries, which self-discharge. Rechargeable alkaline batteries can have a high recharging efficiency and have less environmental impact than disposable cells.
Nickel(II) hydroxide is the inorganic compound with the formula Ni(OH)2. It is a lime-green solid that dissolves with decomposition in ammonia and amines and is attacked by acids. It is electroactive, being converted to the Ni(III) oxy-hydroxide, leading to widespread applications in rechargeable batteries.
The Leclanché cell is a battery invented and patented by the French scientist Georges Leclanché in 1866. The battery contained a conducting solution (electrolyte) of ammonium chloride, a cathode of carbon, a depolarizer of manganese dioxide (oxidizer), and an anode of zinc (reductant). The chemistry of this cell was later successfully adapted to manufacture a dry cell.
Aluminium–air batteries produce electricity from the reaction of oxygen in the air with aluminium. They have one of the highest energy densities of all batteries, but they are not widely used because of problems with high anode cost and byproduct removal when using traditional electrolytes. This has restricted their use to mainly military applications. However, an electric vehicle with aluminium batteries has the potential for up to eight times the range of a lithium-ion battery with a significantly lower total weight.
Batteries provided the primary source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices.
Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Such Zinc electroplating or Zinc alloy electroplating maintains a dominant position among other electroplating process options, based upon electroplated tonnage per annum. According to the International Zinc Association, more than 5 million tons are used yearly for both hot dip galvanizing and electroplating. The plating of zinc was developed at the beginning of the 20th century. At that time, the electrolyte was cyanide based. A significant innovation occurred in the 1960s, with the introduction of the first acid chloride based electrolyte. The 1980s saw a return to alkaline electrolytes, only this time, without the use of cyanide. The most commonly used electrogalvanized cold rolled steel is SECC, acronym of "Steel, Electrogalvanized, Cold-rolled, Commercial quality". Compared to hot dip galvanizing, electroplated zinc offers these significant advantages:
An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy. Historically the term "battery" specifically referred to a device composed of multiple cells; however, the usage has evolved to include devices composed of a single cell.
A silver–cadmium battery is a type of rechargeable battery using cadmium metal as its negative terminal, silver oxide as the positive terminal, and an alkaline water-based electrolyte. It produces about 1.1 volts per cell on discharge, and about 40 watthours per kilogram specific energy density. A silver–cadmium battery provides more energy than a nickel–cadmium cell of comparable weight. It has higher life cycle expectancy than silver–zinc cells, but lower terminal voltage and lower energy density. However, the high cost of silver and the toxicity of cadmium restrict its applications.
Nickel battery may refer to:
This article incorporates text by Caps Wiki available under the CC BY 4.0 license.