Sulfur dye

Last updated

Sulfur dyes are the most commonly used dyes manufactured for cotton in terms of volume. They are inexpensive, generally have good wash-fastness, and are easy to apply. Sulfur dyes are predominantly black, brown, and dark blue. [1] Red sulfur dyes are unknown, although a pink or lighter scarlet color is available.

Contents

Chemistry

Sulfur linkages are the integral part of chromophore in sulfur dyes. They are organosulfur compounds consisting of sulfide (–S–), disulfide (–S–S–) and polysulfide (–Sn–) links in heterocyclic rings. They feature thiazoles, thiazone, thianthrene, and phenothiazonethioanthrone subunits. Being nonionic, sulfur dyes are insoluble in water.

Process

Dyeing includes a few stages, viz. reduction, dyeing, washing, oxidation, soaping, and final washing. The anion is developed on reducing and solubilising at boil when it shows affinity for cellulose. Sodium sulfide (Na2S), the reducing and solubilising agent, performs both reduction and solubilisation, producing thiols and then to sodium salt of thiols or thiolates, which are soluble in water and substantive towards cellulose. Higher rate of exhaustion occurs at 90-95 °C in presence of electrolyte. Dyed cellulosics exhibit a tendering effect on storage under humid atmosphere due to presence of excess free sulfur. Aftertreatment with sodium acetate is required to suppress that. H2S liberated during dyeing forms corrosive metal sulfide. This restricts use of metal vessels except those made of stainless steel: [2]

Fe + H2S → FeS + H2

Production, past and present

The forerunner of sulfur dyes is attributed to "Cachou de Laval", which was discovered by Groissant and Bretonniere in 1873 and is prepared by treating products with lignin (like sawdust or straw) with sulfide sources (like sodium hydroxide or sulphide mixed with sulphur). Subsequently, Henri-Raymond Vidal invented so-called Vidal Blacks in 1893 by reactions of various aniline derivatives with sulfur. These experiments demonstrated that deeply colored materials could be readily produced by combining aromatic compounds and sulfur sources. [3]

The most important member of the class is Sulfur Black 1. It is produced by the reaction of 2,4-dinitrophenol and sodium sulfide in hot water. Like many sulfur dyes, details on the chemical reactions are poorly understood. It is accepted that the sulfide reduces the nitro groups to aniline derivatives, which are thought to form indophenol-containing intermediates that are further crosslinked by reaction with sulfur. The result are insoluble, high molecular weight species. Sulfur Black 1 is imperfectly understood, and the material is probably heterogeneous. It is speculated to be a polymer consisting of thianthrene and phenothiazine subunits. The so-called sulfur bake dyes are produced from 1,4-diaminobenzene and diaminotoluene derivatives. These dyes are proposed to consist of polymers with benzothiazole subunits. Members of the sulfur bake dyes class are Sulfur Orange 1, Sulfur Brown 21, and Sulfur Green 12. [1]

Partial chemical structure of proposed for Sulfur Black 1. SulfurBlack1.svg
Partial chemical structure of proposed for Sulfur Black 1.

Application method

Sulfur dyes are water-insoluble. In the presence of a reducing agent and at alkaline pH at elevated temperature of around 80 °C, the dye particles disintegrate, which then become water-soluble and hence can be absorbed by the fabric. Sodium sulfide or sodium hydrosulfide are suitable reducing agents. Common salt facilitates the absorption. After the fabric is removed from the dye solution, it is allowed to stand in air whereupon the dye is regenerated by oxidation. The regenerated parent dye is insoluble in water. Oxidation can also be effected in air or by hydrogen peroxide or sodium bromate in a mildly acidic solution.

The low water solubility is the basis of the good wash-fastness of these dyed fabrics. These dyes have good all-around colour fastness except to chlorine bleaches. Because the dye is water-insoluble, it will not bleed when washed in water and will not stain other clothes. The dye, however, may have poor fastness to rubbing. The dyes are bleached by hypochlorite bleach.

Environmental issues

Due to the highly polluting nature of the dye-bath effluent, sulfur dyes are being slowly phased out in the West but they are used on a large scale in China. [3] Recent advances in dyeing technologies have allowed the substitution of toxic sulfide reducing agents. Glucose in basic solution is now used and both low-sulfide and zero-sulfide products are available. Future developments in the field of reducing dye levels by means of electrochemical processes are promising.

Related Research Articles

<span class="mw-page-title-main">Dye</span> Soluble chemical substance or natural material which can impart color to other materials

A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and may require a mordant to improve the fastness of the dye on the fiber.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.

<span class="mw-page-title-main">Tie-dye</span> Technique of resist dyeing

Tie-dye is a term used to describe a number of resist dyeing techniques and the resulting dyed products of these processes. The process of tie-dye typically consists of folding, twisting, pleating, or crumpling fabric or a garment, before binding with string or rubber bands, followed by the application of dye or dyes. The manipulations of the fabric before the application of dye are called resists, as they partially or completely prevent ('resist') the applied dye from coloring the fabric. More sophisticated tie-dye may involve additional steps, including an initial application of dye before the resist, multiple sequential dyeing and resist steps, and the use of other types of resists and discharge.

<span class="mw-page-title-main">Anthraquinone</span> Chemical compound

Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula C
14
H
8
O
2
. Isomers include various quinone derivatives. The term anthraquinone however refers to the isomer, 9,10-anthraquinone wherein the keto groups are located on the central ring. It is a building block of many dyes and is used in bleaching pulp for papermaking. It is a yellow, highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.

<span class="mw-page-title-main">Kraft process</span> Process of converting wood into wood pulp

The kraft process (also known as kraft pulping or sulfate process) is a process for conversion of wood into wood pulp, which consists of almost pure cellulose fibres, the main component of paper. The kraft process involves treatment of wood chips with a hot mixture of water, sodium hydroxide (NaOH), and sodium sulfide (Na2S), known as white liquor, that breaks the bonds that link lignin, hemicellulose, and cellulose. The technology entails several steps, both mechanical and chemical. It is the dominant method for producing paper. In some situations, the process has been controversial because kraft plants can release odorous products and in some situations produce substantial liquid wastes.

<span class="mw-page-title-main">Sodium sulfite</span> Chemical compound

Sodium sulfite (sodium sulphite) is the inorganic compound with the chemical formula Na2SO3. A white, water-soluble solid, it is used commercially as an antioxidant and preservative. It is also suitable for the softening of lignin in the pulping and refining processes of wood and lignocellulosic materials. A heptahydrate is also known but it is less useful because of its greater susceptibility toward oxidation by air.

<span class="mw-page-title-main">Sodium thiosulfate</span> Chemical compound

Sodium thiosulfate is an inorganic compound with the formula Na2S2O3·(H2O)(x) .Typically it is available as the white or colorless pentahydrate, It is a white solid that dissolves well in water. The compound is a reducing agent and a ligand, and these properties underpin its applications.

Desizing is the process of removing the size material from warp yarns after a textile fabric is woven.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Calcium sulfide</span> Chemical compound of formula CaS

Calcium sulfide is the chemical compound with the formula CaS. This white material crystallizes in cubes like rock salt. CaS has been studied as a component in a process that would recycle gypsum, a product of flue-gas desulfurization. Like many salts containing sulfide ions, CaS typically has an odour of H2S, which results from small amount of this gas formed by hydrolysis of the salt.

<span class="mw-page-title-main">Sodium dithionite</span> Chemical compound

Sodium dithionite is a white crystalline powder with a sulfurous odor. Although it is stable in dry air, it decomposes in hot water and in acid solutions.

<span class="mw-page-title-main">Carboxymethyl cellulose</span> Cellulose derivative grafted with carboxymethyl groups

Carboxymethyl cellulose (CMC) or cellulose gum is a cellulose derivative with carboxymethyl groups (-CH2-COOH) bound to some of the hydroxyl groups of the glucopyranose monomers that make up the cellulose backbone. It is often used as its sodium salt, sodium carboxymethyl cellulose. It used to be marketed under the name Tylose, a registered trademark of SE Tylose.

Vat dyes are a class of dyes that are classified as such because of the method by which they are applied. Vat dyeing is a process that refers to dyeing that takes place in a bucket or vat. The original vat dye is indigo, once obtained only from plants but now often produced synthetically.

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols. An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

<span class="mw-page-title-main">Diphenylamine</span> Chemical compound

Diphenylamine is an organic compound with the formula (C6H5)2NH. The compound is a derivative of aniline, consisting of an amine bound to two phenyl groups. The compound is a colorless solid, but commercial samples are often yellow due to oxidized impurities. Diphenylamine dissolves well in many common organic solvents, and is moderately soluble in water. It is used mainly for its antioxidant properties. Diphenylamine is widely used as an industrial antioxidant, dye mordant and reagent and is also employed in agriculture as a fungicide and antihelmintic.

Wet Processing Engineering is one of the major streams in Textile Engineering or Textile manufacturing which refers to the engineering of textile chemical processes and associated applied science. The other three streams in textile engineering are yarn engineering, fabric engineering, and apparel engineering. The processes of this stream are involved or carried out in an aqueous stage. Hence, it is called a wet process which usually covers pre-treatment, dyeing, printing, and finishing.

<span class="mw-page-title-main">Mercaptobenzothiazole</span> Chemical compound

2-Mercaptobenzothiazole is an organosulfur compound with the formula C6H4(NH)SC=S. A white solid, it is used in the sulfur vulcanization of rubber.

In textile processing, stripping is a color removal technique employed to partially or eliminate color from dyed textile materials. Textile dyeing industries often face challenges like uneven or flawed dyeing and the appearance of color patches on the fabric's surface during the dyeing process and subsequent textile material processing stages. Stripping is one of the reprocessing methods used to correct undesirable colors and flaws in dyed materials. The efficacy of this process relies on factors such as the dye type, fiber material, and the stripping agents utilized. Additionally, the procedure is recognized by alternative terms, namely back stripping or destructive stripping.

References

  1. 1 2 Nagl, Gert (2000). "Sulfur Dyes". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a25_613. ISBN   978-3527306732.
  2. Peters R. H, "Textile Chemistry", Vol - II, Elsevier Publishing Company, London (1967)
  3. 1 2 Parikshit Goswami, Montu Basak "Sulfur Dyes" in Kirk-Othmer Encyclopedia of Chemical Technology, 2001, John Wiley & Sons. doi : 10.1002/0471238961.1921120619051409.a01.pub2.
  4. Industrial Dyes: Chemistry, Properties, Applications" Klaus Hunger, Ed. 2007, Wiley-VCH, Weinheim. ISBN   3-527-30426-6