Tetralithiomethane

Last updated
Tetralithiomethane
CLi4 explicit geometric.png
Names
IUPAC name
Tetralithiomethane
Other names
  • Carbon tetralithium
  • Lithium carbide
  • Tetralithium carbide
Identifiers
3D model (JSmol)
  • InChI=1S/C.4Li
    Key: SOAIVWSMVGHHPJ-UHFFFAOYSA-N
  • [Li]C([Li])([Li])[Li]
Properties
CLi4
Molar mass 39.77 g·mol−1
AppearanceRed solid
Melting point 225 °C (437 °F; 498 K) [1] (decomposes)
Hydrolysis
Solubility Soluble in cyclohexane
Hazards
GHS labelling:
GHS-pictogram-flamme.svg
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetralithiomethane, also known as tetralithium carbide, is an organolithium compound with the formula C Li 4. It is an extremely pyrophoric red solid and is the lithium analog of methane. [2]

Contents

Production

Its main route of production is by the lithiation of tetrakis(chloromercurio)methane (C(HgCl)4) by tert-butyllithium. It can also be produced by the reaction of lithium metal and carbon tetrachloride at 900 °C: [2] [3]

8 Li + CCl4 → CLi4 + 4 LiCl

However, this method also produces byproducts, such as lithium carbide.

Reactions

Tetralithiomethane hydrolyzes vigorously in contact with water producing methane gas and lithium hydroxide: [2]

CLi4 + 4 H2O → CH4 + 4 LiOH

Deuterated methane CD4 can also be produced by reacting heavy water with tetralithiomethane.

CLi4 + 4 D2O → CD4 + 4 LiOD

When tetralithiomethane is heated to 225 °C, it decomposes to lithium carbide and lithium metal. [1] [2]

Due to the known affinity of lithium ions Li+ for hydrogen molecules H2 and therefore potential applications in hydrogen storage materials, tetralithiomethane has been studied computationally for its aggregation, H2 affinity, and binding to various graphene-type surfaces. [4]

Related Research Articles

<span class="mw-page-title-main">Hydrogen</span> Chemical element with atomic number 1 (H)

Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H2, sometimes called dihydrogen, but more commonly called hydrogen gas, molecular hydrogen or simply hydrogen. It is colorless, odorless, tasteless, non-toxic, and highly combustible. Constituting approximately 75% of all normal matter, hydrogen is the most abundant chemical substance in the universe. Stars, including the Sun, primarily consist of hydrogen in a plasma state, while on Earth, hydrogen is found in water, organic compounds, as dihydrogen, and in other molecular forms. The most common isotope of hydrogen consists of one proton, one electron, and no neutrons.

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are also called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient.

<span class="mw-page-title-main">Silane</span> Chemical compound (SiH4)

Silane (Silicane) is an inorganic compound with chemical formula SiH4. It is a colorless, pyrophoric, toxic gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents. They are commonly used to apply coatings to surfaces or as an adhesion promoter.

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), commonly known as diborane, is the chemical compound with the formula B2H6. It is a highly toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Given its simple formula, borane is a fundamental boron compound. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

<span class="mw-page-title-main">Lithium hydride</span> Chemical compound

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all protic organic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride. With a molar mass of 7.95 g/mol, it is the lightest ionic compound.

<span class="mw-page-title-main">Lithium nitride</span> Chemical compound

Lithium nitride is an inorganic compound with the chemical formula Li3N. It is the only stable alkali metal nitride. It is a reddish-pink solid with a high melting point.

<span class="mw-page-title-main">Hydrogen storage</span> Methods of storing hydrogen for later use

Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs. The overarching challenge is the very low boiling point of H2: it boils around 20.268 K (−252.882 °C or −423.188 °F). Achieving such low temperatures requires expending significant energy.

<span class="mw-page-title-main">Lithium amide</span> Chemical compound

Lithium amide or lithium azanide is an inorganic compound with the chemical formula LiNH2. It is a white solid with a tetragonal crystal structure. Lithium amide can be made by treating lithium metal with liquid ammonia:

<span class="mw-page-title-main">Borohydride</span>

Borohydride refers to the anion [BH4], which is also called tetrahydridoborate, and its salts. Borohydride or hydroborate is also the term used for compounds containing [BH4−nXn], where n is an integer from 0 to 3, for example cyanoborohydride or cyanotrihydroborate [BH3(CN)] and triethylborohydride or triethylhydroborate [BH(CH2CH3)3]. Borohydrides find wide use as reducing agents in organic synthesis. The most important borohydrides are lithium borohydride and sodium borohydride, but other salts are well known. Tetrahydroborates are also of academic and industrial interest in inorganic chemistry.

<span class="mw-page-title-main">Aluminium hydride</span> Chemical compound

Aluminium hydride is an inorganic compound with the formula AlH3. Alane and its derivatives are part of a family of common reducing reagents in organic synthesis based around group 13 hydrides. In solution—typically in ethereal solvents such tetrahydrofuran or diethyl ether—aluminium hydride forms complexes with Lewis bases, and reacts selectively with particular organic functional groups, and although it is not a reagent of choice, it can react with carbon-carbon multiple bonds. Given its density, and with hydrogen content on the order of 10% by weight, some forms of alane are, as of 2016, active candidates for storing hydrogen and so for power generation in fuel cell applications, including electric vehicles. As of 2006 it was noted that further research was required to identify an efficient, economical way to reverse the process, regenerating alane from spent aluminium product.

Lithium carbide, Li2C2, often known as dilithium acetylide, is a chemical compound of lithium and carbon, an acetylide. It is an intermediate compound produced during radiocarbon dating procedures. Li2C2 is one of an extensive range of lithium-carbon compounds which include the lithium-rich Li4C, Li6C2, Li8C3, Li6C3, Li4C3, Li4C5, and the graphite intercalation compounds LiC6, LiC12, and LiC18.

<span class="mw-page-title-main">Sodium aluminium hydride</span> Chemical compound

Sodium aluminium hydride or sodium alumanuide is an inorganic compound with the chemical formula NaAlH4. It is a white pyrophoric solid that dissolves in tetrahydrofuran (THF), but not in diethyl ether or hydrocarbons. It has been evaluated as an agent for the reversible storage of hydrogen and it is used as a reagent for the chemical synthesis of organic compounds. Similar to lithium aluminium hydride, it is a salt consisting of separated sodium cations and tetrahedral AlH
4
anions.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

<span class="mw-page-title-main">Beryllium hydride</span> Chemical compound

Beryllium hydride is an inorganic compound with the chemical formula n. This alkaline earth hydride is a colourless solid that is insoluble in solvents that do not decompose it. Unlike the ionically bonded hydrides of the heavier Group 2 elements, beryllium hydride is covalently bonded.

<span class="mw-page-title-main">Magnesium hydride</span> Chemical compound

Magnesium hydride is the chemical compound with the molecular formula MgH2. It contains 7.66% by weight of hydrogen and has been studied as a potential hydrogen storage medium.

Zinc hydride is an inorganic compound with the chemical formula ZnH2. It is a white, odourless solid which slowly decomposes into its elements at room temperature; despite this it is the most stable of the binary first row transition metal hydrides. A variety of coordination compounds containing Zn–H bonds are used as reducing agents, but ZnH2 itself has no common applications.

<span class="mw-page-title-main">Lithium imide</span> Chemical compound

Lithium imide is an inorganic compound with the chemical formula Li2NH. This white solid can be formed by a reaction between lithium amide and lithium hydride.

<span class="mw-page-title-main">1,2-Dimethyldiborane</span> Chemical compound

1,2-Dimethyldiborane is an organoboron compound with the formula [(CH3)BH2]2. Structurally, it is related to diborane, but with methyl groups replacing terminal hydrides on each boron. It is the dimer of methylborane, CH3BH2, the simplest alkylborane. 1,2-Dimethyldiborane can exist in a cis- and a trans arrangement. 1,2-Dimethyldiborane is an easily condensed, colorless gas that ignites spontaneously in air.

References

  1. 1 2 Lawrence A. Shimp; John A. Morrison; John A. Gurak; John W. Chinn Jr.; Richard J. Lagow (1981). "Observations on the nature of polylithium organic compounds and their rearrangements". Journal of the American Chemical Society. 103 (19): 5951–5953. doi:10.1021/ja00409a074.
  2. 1 2 3 4 Adalbert Maercker; Manfred Theis (1984). "Tetralithiomethane". Angewandte Chemie International Edition. 23 (12): 995–996. doi:10.1002/anie.198409951.
  3. C. Chung; R. J. Lagow (1972). "Reaction of lithium atoms at 800 °C with chlorocarbons; a new route to polylithium compounds". Journal of the Chemical Society, Chemical Communications (19): 1078–1079. doi:10.1039/C3972001078B.
  4. Er, Süleyman; de Wijs, Gilles A.; Brocks, Geert (2009). "Hydrogen Storage by Polylithiated Molecules and Nanostructures". J. Phys. Chem. C. 113 (20): 8997–9002. arXiv: 0902.2339 . doi:10.1021/jp901305h. S2CID   17237753.