Kenneth Poeppelmeier

Last updated

Kenneth Reinhard Poeppelmeier (born 6 October 1949) is the Charles E. & Emma H. Morrison Professor of Chemistry at Northwestern University. [1] [2]

Kenneth R. Poeppelmeier
Born6 October 1949
Alma mater University of Missouri, Iowa State University
Known for Solid-state chemistry, Materials chemistry, Catalysis, crystal growth, nonlinear optical materials, Energy Storage Materials
AwardsFellow of the American Association for the Advancement of Science, Elected foreign member (2016) of Spanish Royal Academy of Sciences, Elected Honorary Member (2017) of the Spanish Royal Society of Chemistry (RSEQ)
Scientific career
FieldsChemistry
Institutions Northwestern University
Academic advisors John D. Corbett

Poeppelmeier was raised in St. Charles, Missouri. He completed a bachelor's degree in chemistry from University of Missouri and, after serving in the Peace Corps, [3] he attended Iowa State University where he was an awarded a doctorate in 1978 under the direction of John Corbett. After working at Exxon for six years, he joined the Northwestern University chemistry faculty in 1984. At Northwestern, his groups work has focused on the role of synthesis and materials design [4] [5] with applications in superconductivity, [6] nonlinear optical materials, [7] [8] [9] catalysis, [10] and energy storage. [11] [12] [13] From 1995-2015, he was the materials editor for the American Chemical Society journal Inorganic Chemistry


Related Research Articles

<span class="mw-page-title-main">Erbium</span> Chemical element, symbol Er and atomic number 68

Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.

In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon.

<span class="mw-page-title-main">Zinc oxide</span> White powder insoluble in water

Zinc oxide is an inorganic compound with the formula ZnO. It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement, lubricants, paints, sunscreens, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, semi conductors, and first-aid tapes. Although it occurs naturally as the mineral zincite, most zinc oxide is produced synthetically.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

<span class="mw-page-title-main">Lanthanum oxide</span> Chemical compound

Lanthanum(III) oxide, also known as lanthana, chemical formula La2O3, is an inorganic compound containing the rare earth element lanthanum and oxygen. It is used in some ferroelectric materials, as a component of optical materials, and is a feedstock for certain catalysts, among other uses.

<span class="mw-page-title-main">Nickel(II) oxide</span> Chemical compound

Nickel(II) oxide is the chemical compound with the formula NiO. It is the principal oxide of nickel. It is classified as a basic metal oxide. Several million kilograms are produced annually of varying quality, mainly as an intermediate in the production of nickel alloys. The mineralogical form of NiO, bunsenite, is very rare. Other nickel oxides have been claimed, for example: Nickel(III) oxide(Ni
2
O
3
) and NiO
2
, but they have yet to be proven by X-ray crystallography in bulk. Nickel(III) oxide nanoparticles have recently (2015) been characterized using powder X-ray diffraction and electron microscopy.

<span class="mw-page-title-main">Gallium(III) oxide</span> Chemical compound

Gallium(III) oxide is an inorganic compound and ultra-wide-bandgap semiconductor with the formula Ga2O3. It is actively studied for applications in power electronics, phosphors, and gas sensing. The compound has several polymorphs, of which the monoclinic β-phase is the most stable. The β-phase’s bandgap of 4.7–4.9 eV and large-area, native substrates make it a promising competitor to GaN and SiC-based power electronics applications and solar-blind UV photodetectors. The orthorhombic ĸ-Ga2O3 is the second most stable polymorph. The ĸ-phase has shown instability of subsurface doping density under thermal exposure. Ga2O3 exhibits reduced thermal conductivity and electron mobility by an order of magnitude compared to GaN and SiC, but is predicted to be significantly more cost-effective due to being the only wide-bandgap material capable of being grown from melt. β-Ga2O3 is thought to be radiation-hard, which makes it promising for military and space applications.

<span class="mw-page-title-main">Krypton difluoride</span> Chemical compound

Krypton difluoride, KrF2 is a chemical compound of krypton and fluorine. It was the first compound of krypton discovered. It is a volatile, colourless solid at room temperature. The structure of the KrF2 molecule is linear, with Kr−F distances of 188.9 pm. It reacts with strong Lewis acids to form salts of the KrF+ and Kr
2
F+
3
cations.

<span class="mw-page-title-main">Dodecacalcium hepta-aluminate</span> Rare mineral mayenite and important phase in calcium aluminate cements

Dodecacalcium hepta-aluminate (12CaO·7Al2O3, Ca12Al14O33 or C12A7) is an inorganic solid that occurs rarely in nature as the mineral mayenite. It is an important phase in calcium aluminate cements and is an intermediate in the manufacture of Portland cement. Its composition and properties have been the subject of much debate, because of variations in composition that can arise during its high-temperature formation.

<span class="mw-page-title-main">Graphite oxide</span> Compound of carbon, oxygen, and hydrogen

Graphite oxide (GO), formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating graphite with strong oxidizers and acids for resolving of extra metals. The maximally oxidized bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.

<span class="mw-page-title-main">Rodney S. Ruoff</span> American chemist

Rodney S. "Rod" Ruoff is an American physical chemist and nanoscience researcher. He is one of the world experts on carbon materials including carbon nanostructures such as fullerenes, nanotubes, graphene, diamond, and has had pioneering discoveries on such materials and others. Ruoff received his B.S. in chemistry from the University of Texas at Austin (1981) and his Ph.D. in chemical physics at the University of Illinois-Urbana (1988). After a Fulbright Fellowship at the MPI fuer Stroemungsforschung in Goettingen, Germany (1989) and postdoctoral work at the IBM T. J. Watson Research Center (1990–91), Ruoff became a staff scientist in the Molecular Physics Laboratory at SRI International (1991–1996). He is currently UNIST Distinguished Professor at the Ulsan National Institute of Science and Technology (UNIST), and the director of the Center for Multidimensional Carbon Materials, an Institute for Basic Science Center located at UNIST.

<span class="mw-page-title-main">Kenneth S. Suslick</span>

Kenneth S. Suslick is the Marvin T. Schmidt Professor of Chemistry Emeritus at the University of Illinois at Urbana–Champaign. His area of focus is on the chemical and physical effects of ultrasound, sonochemistry, and sonoluminescence. In addition, he has worked in the fields of artificial and machine olfaction, electronic nose technology, chemical sensor arrays, and the use of colorimetric sensor arrays as an optoelectronic nose.

Vanadium phosphates are inorganic compounds with the formula VOxPO4 as well related hydrates with the formula VOxPO4(H2O)n. Some of these compounds are used commercially as catalysts for oxidation reactions.

The borate carbonates are mixed anion compounds containing both borate and carbonate ions. Compared to mixed anion compounds containing halides, these are quite rare. They are hard to make, requiring higher temperatures, which are likely to decompose carbonate to carbon dioxide. The reason for the difficulty of formation is that when entering a crystal lattice, the anions have to be correctly located, and correctly oriented. They are also known as carbonatoborates or borocarbonates. Although these compounds have been termed carboborate, that word also refers to the C=B=C5− anion, or CB11H12 anion. This last anion should be called 1-carba-closo-dodecaborate or monocarba-closo-dodecaborate.

Zinc oxide (ZnO) nanostructures are structures with at least one dimension on the nanometre scale, composed predominantly of zinc oxide. They may be combined with other composite substances to change the chemistry, structure or function of the nanostructures in order to be used in various technologies. Many different nanostructures can be synthesised from ZnO using relatively inexpensive and simple procedures. ZnO is a semiconductor material with a wide band gap energy of 3.3eV and has the potential to be widely used on the nanoscale. ZnO nanostructures have found uses in environmental, technological and biomedical purposes including ultrafast optical functions, dye-sensitised solar cells, lithium-ion batteries, biosensors, nanolasers and supercapacitors. Research is ongoing to synthesise more productive and successful nanostructures from ZnO and other composites. ZnO nanostructures is a rapidly growing research field, with over 5000 papers published during 2014-2019.

An oxyhydride is a mixed anion compound containing both oxide O2− and hydride ions H. These compounds may be unexpected as the hydrogen and oxygen could be expected to react to form water. But if the metals making up the cations are electropositive enough, and the conditions are reducing enough, solid materials can be made that combine hydrogen and oxygen in the negative ion role.

The iodate fluorides are chemical compounds which contain both iodate and fluoride anions (IO3 and F). In these compounds fluorine is not bound to iodine as it is in fluoroiodates.

<span class="mw-page-title-main">Terbium compounds</span> Chemical compounds with at least one terbium atom

Terbium compounds are compounds formed by the lanthanide metal terbium (Tb). Terbium generally exhibits the +3 oxidation state in these compounds, such as in TbCl3, Tb(NO3)3 and Tb(CH3COO)3. Compounds with terbium in the +4 oxidation state are also known, such as TbO2 and BaTbF6. Terbium can also form compounds in the 0, +1 and +2 oxidation states.

References

  1. Li, Yadong (2019). "A solid-state chemist's eye for the development of materials science in China". Science China Materials. 62 (12): 1783–1787. doi: 10.1007/s40843-019-1194-0 .
  2. "KENNETH R. POEPPELMEIER". Northwestern University Weinberg College of Arts and Sciences. Retrieved 6 August 2023.
  3. "Authors Biography for KENNETH R. POEPPELMEIER". Elsevier. Retrieved 3 October 2023.
  4. Sheets, W.C.; Mugnier, E.; Barnabe, A.; Marks, Tobin; Poeppelmeier, K.R. (2006). "Hydrothermal synthesis of delafossite-type oxides". Chemistry of Materials. 18 (1): 7–20.
  5. Kageyama, H.; Hayashi, K.; Maeda, K.; Attfield, J.P.; Hiroi, Z.; Rondinelli, James; Poeppelmeier, K.R. (2018). "Expanding frontiers in materials chemistry and physics with multiple anions". Chemistry of Materials. 28 (1): 17–20.
  6. Vaughey, J.T.; Thiel, J.; Hasty, E.; Groenke, D.; Stern, Charlotte; Poeppelmeier, K.R.; Dabrowski, B.; Hinks, D.G.; Mitchell, A.W. (1991). "Synthesis and structure of a new family of cuprate superconductors: LnSr2Cu2GaO7". Chemistry of Materials. 3 (5): 935–940.
  7. Gautier, R.; Klingsporn, R.P.; Van Duyne, R.P.; Poeppelmeier, K.R. (2016). "Optical Activity from Racemates". Nature Communications. 9: 772.
  8. Tran, T.T.; Yu, H.; Rondinelli, James; Poeppelmeier, K.R.; Halasymani, P.S. (2016). "Deep Ultraviolent Non-linear Optical Materials". Chemistry of Materials. 28 (15): 5238–5258.
  9. Halasymani, P.S.; Poeppelmeier, K.R. (1998). "Noncentrosymmetric Oxides". Chemistry of Materials. 10 (10): 2753–2769.
  10. Lin, Yuyuan; Wu, Zili; Wen, J.; Poeppelmeier, K.R.; Marks, L.D. (2014). "Imaging the Atomic Surface Structures of CeO2 Nanoparticles". NanoLetters. 14 (1): 496.
  11. Wan, L.; Incorvati, J.; Poeppelmeier, K.R.; Prendergast, D. (2016). "Building a fast lane for Mg diffusion in α-MoO3 by fluorine doping". Chemistry of Materials. 28 (19): 6900–6908.
  12. Incorvati, J.; Wan, L.; Key, Baris; Zhou, C.; Liao, Chen; Fuoco, L.; Holland, M.; Wang, Hao; Prendergast, D.; Poeppelmeier, K.R.; Vaughey, J.T. (2014). "Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode". Chemistry of Materials. 28 (1): 17–20.
  13. Sorenson, E.M.; Barry, S.; Jung, H.-K.; Rondinelli, James; Vaughey, J.T.; Poeppelmeier, K.R. (2006). "Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties". Chemistry of Materials. 128 (2): 482–489.