Diberal

Last updated

Contents

Diberal [1]
DMBB structure.png
5-(1,3-Dimethylbutyl)-5-ethylbarbituric acid (3d).png
Names
IUPAC name
5-ethyl-5-(4-methylpentan-2-yl)-1,3-diazinane-2,4,6-trione
Other names
  • DMBB
  • 5-Ethyl-5-(1,3-dimethylbutyl)barbituric acid
  • 5-(1,3-Dimethylbutyl)-5-ethylbarbituric acid
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C12H20N2O3/c1-5-12(8(4)6-7(2)3)9(15)13-11(17)14-10(12)16/h7-8H,5-6H2,1-4H3,(H2,13,14,15,16,17)
    Key: KXHLANWWTKSOMW-UHFFFAOYSA-N
  • CCC1(C(=O)NC(=O)NC1=O)C(C)CC(C)C
Properties
C12H20N2O3
Molar mass 240.303 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diberal, also known as 5-(1,3-Dimethylbutyl)-5-ethylbarbituric acid or DMBB, is an atypical barbiturate. This compound can be either convulsant or anticonvulsant depending on which enantiomer is used.

Pharmacology

Diberal, unlike most barbiturates, can have convulsant actions. This is uncommon, as barbiturates typically enhance the function of GABA as allorestic modulators and agonists (at higher doses), [2] therefore having anticonvulsant properties. Depending on which isomer is used, it can have either convulsant or anticonvulsant actions.

The different pharmacological profile between isomers is thought to be due to the differences in the formation of hydrogen bonds at the binding sites. [3]

(+)-Isomer

(+)-DMBB is the atypical enantiomer of diberal. It is atypical in the means that it has convulsant action, unlike most barbiturate drugs. [4]

(−)-Isomer

Unlike (+)-DMBB, the (−)-isomer is similar to most barbiturates by having anticonvulsant action. It has been found that administration of (−)-DMBB reverses the convulsant actions of (+)-DMBB. [3] (−)-DMBB is slightly more potent than pentobarbital in its depressant properties. [5]

Related Research Articles

A psychiatric or psychotropic medication is a psychoactive drug taken to exert an effect on the chemical makeup of the brain and nervous system. Thus, these medications are used to treat mental illnesses. These medications are typically made of synthetic chemical compounds and are usually prescribed in psychiatric settings, potentially involuntarily during commitment. Since the mid-20th century, such medications have been leading treatments for a broad range of mental disorders and have decreased the need for long-term hospitalization, thereby lowering the cost of mental health care. The recidivism or rehospitalization of the mentally ill is at a high rate in many countries, and the reasons for the relapses are under research.

<span class="mw-page-title-main">Tramadol</span> Medication of the opioid type, patented 1972

Tramadol, sold under the brand name Ultram among others, is an opioid pain medication and a serotonin–norepinephrine reuptake inhibitor (SNRI) used to treat moderately severe pain. When taken by mouth in an immediate-release formulation, the onset of pain relief usually begins within an hour. It is also available by injection. It is available in combination with paracetamol (acetaminophen).

Depressants, colloquially known as "downers" or central nervous system (CNS) depressants, are drugs that lower neurotransmission levels, decrease the electrical activity of brain cells, or reduce arousal or stimulation in various areas of the brain. Some specific depressants do influence mood, either positively or negatively, but depressants often have no clear impact on mood. In contrast, stimulants, or "uppers", increase mental alertness, making stimulants the opposite drug class from depressants. Antidepressants are defined by their effect on mood, not on general brain activity, so they form an orthogonal category of drugs.

<span class="mw-page-title-main">Chloralose</span> Chemical compound

Chloralose is an avicide, and a rodenticide used to kill mice in temperatures below 15 °C. It is also widely used in neuroscience and veterinary medicine as an anesthetic and sedative. Either alone or in combination, such as with urethane, it is used for long-lasting, but light anesthesia.

<span class="mw-page-title-main">Ethosuximide</span> Medication used to treat absence seizures

Ethosuximide, sold under the brand name Zarontin among others, is a medication used to treat absence seizures. It may be used by itself or with other antiseizure medications such as valproic acid. Ethosuximide is taken by mouth.

<span class="mw-page-title-main">Camazepam</span> Chemical compound

Camazepam is a benzodiazepine psychoactive drug, marketed under the brand names Albego, Limpidon and Paxor. It is the dimethyl carbamate ester of temazepam, a metabolite of diazepam. While it possesses anxiolytic, anticonvulsant, skeletal muscle relaxant and hypnotic properties it differs from other benzodiazepines in that its anxiolytic properties are particularly prominent but has comparatively limited anticonvulsant, hypnotic and skeletal muscle relaxant properties.

<span class="mw-page-title-main">Tofisopam</span> Anxiolytic medication

Tofisopam is an anxiolytic that is marketed in several European countries. Chemically, it is a 2,3-benzodiazepine. Unlike other anxiolytic benzodiazepines however, tofisopam does not have anticonvulsant, sedative, skeletal muscle relaxant, motor skill-impairing or amnestic properties. While it may not be an anticonvulsant in and of itself, it has been shown to enhance the anticonvulsant action of classical 1,4-benzodiazepines and muscimol, but not sodium valproate, carbamazepine, phenobarbital, or phenytoin. Tofisopam is indicated for the treatment of anxiety and alcohol withdrawal, and is prescribed in a dosage of 50–300 mg per day divided into three doses. Peak plasma levels are attained two hours after an oral dose. Tofisopam is not reported as causing dependence to the same extent as other benzodiazepines, but is still recommended to be prescribed for a maximum of 12 weeks.

<span class="mw-page-title-main">Hexobarbital</span> Chemical compound

Hexobarbital or hexobarbitone, sold both in acid and sodium salt forms as Citopan, Evipan, and Tobinal, is a barbiturate derivative having hypnotic and sedative effects. It was used in the 1940s and 1950s as an agent for inducing anesthesia for surgery, as well as a rapid-acting, short-lasting hypnotic for general use, and has a relatively fast onset of effects and short duration of action. Modern barbiturates have largely supplanted the use of hexobarbital as an anesthetic, as they allow for better control of the depth of anesthesia. Hexobarbital is still used in some scientific research.

<span class="mw-page-title-main">Y-23684</span> Chemical compound

Y-23684 is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">Glaucine</span> Chemical compound

Glaucine(1,2,9,10-TetraMethoxyAporphine, Bromcholitin, Glauvent, Tusidil, Tussiglaucin) is an aporphine alkaloid found in several different plant species in the family Papaveraceae such as Glaucium flavum, Glaucium oxylobum and Corydalis yanhusuo, and in other plants like Croton lechleri in the family Euphorbiaceae.

A convulsant is a drug which induces convulsions and/or epileptic seizures, the opposite of an anticonvulsant. These drugs generally act as stimulants at low doses, but are not used for this purpose due to the risk of convulsions and consequent excitotoxicity. Most convulsants are antagonists at either the GABAA or glycine receptors, or ionotropic glutamate receptor agonists. Many other drugs may cause convulsions as a side effect at high doses but only drugs whose primary action is to cause convulsions are known as convulsants. Nerve agents such as sarin, which were developed as chemical weapons, produce convulsions as a major part of their toxidrome, but also produce a number of other effects in the body and are usually classified separately. Dieldrin which was developed as an insecticide blocks chloride influx into the neurons causing hyperexcitability of the CNS and convulsions. The Irwin observation test and other studies that record clinical signs are used to test the potential for a drug to induce convulsions. Camphor, and other terpenes given to children with colds can act as convulsants in children who have had febrile seizures.

<span class="mw-page-title-main">Barbiturate</span> Class of depressant drugs derived from barbituric acid

Barbiturates are a class of depressant drugs that are chemically derived from barbituric acid. They are effective when used medically as anxiolytics, hypnotics, and anticonvulsants, but have physical and psychological addiction potential as well as overdose potential among other possible adverse effects. They have been used recreationally for their anti-anxiety and sedative effects, and are thus controlled in most countries due to the risks associated with such use.

An enantiopure drug is a pharmaceutical that is available in one specific enantiomeric form. Most biological molecules are present in only one of many chiral forms, so different enantiomers of a chiral drug molecule bind differently to target receptors. Chirality can be observed when the geometric properties of an object is not superimposable with its mirror image. Two forms of a molecule are formed from a chiral carbon, these two forms are called enantiomers. One enantiomer of a drug may have a desired beneficial effect while the other may cause serious and undesired side effects, or sometimes even beneficial but entirely different effects. The desired enantiomer is known as an eutomer while the undesired enantiomer is known as the distomer. When equal amounts of both enantiomers are found in a mixture, the mixture is known as a racemic mixture. If a mixture for a drug does not have a 1:1 ratio of its enantiomers it is a candidate for an enantiopure drug. Advances in industrial chemical processes have made it economical for pharmaceutical manufacturers to take drugs that were originally marketed as a racemic mixture and market the individual enantiomers, either by specifically manufacturing the desired enantiomer or by resolving a racemic mixture. On a case-by-case basis, the U.S. Food and Drug Administration (FDA) has allowed single enantiomers of certain drugs to be marketed under a different name than the racemic mixture. Also case-by-case, the United States Patent Office has granted patents for single enantiomers of certain drugs. The regulatory review for marketing approval and for patenting is independent, and differs country by country.

The eudysmic ratio represents the difference in pharmacologic activity between the two enantiomers of a drug. In most cases where a chiral compound is biologically active, one enantiomer is more active than the other. The eudysmic ratio is the ratio of activity between the two. A eudysmic ratio significantly differing from 1 means that they are statistically different in activity. Eudisimic ratio (ER) reflects the degree of enantioselectivity of the biological systems. For example, (S)-propranolol meaning that (S)-propranolol is 130 times more active than its (R)-enantiomer.

<span class="mw-page-title-main">HA-966</span> Chemical compound

HA-966 or (±)-3-amino-1-hydroxy-pyrrolidin-2-one is a molecule used in scientific research as a glycine receptor and NMDA receptor antagonist / low efficacy partial agonist. It has neuroprotective and anticonvulsant, anxiolytic, antinociceptive and sedative / hypnotic effects in animal models. Pilot human clinical trials in the early 1960s showed that HA-966 appeared to benefit patients with tremors of extrapyramidal origin.

<span class="mw-page-title-main">Flmodafinil</span> Wakefulness-promoting drug/Dopamine reuptake inhibitor

Flmodafinil, also known as bisfluoromodafinil and lauflumide, is a wakefulness-promoting agent related to modafinil which has been developed for treatment of a variety of different medical conditions. These include chronic fatigue syndrome, idiopathic hypersomnia, narcolepsy, attention deficit hyperactivity disorder (ADHD), and Alzheimer's disease. Aside its development as a potential pharmaceutical drug, flmodafinil is sold online and used non-medically as a nootropic.

<span class="mw-page-title-main">CBD-DMH</span> Chemical compound with cannabinoid effects

Cannabidiol-dimethylheptyl (CBD-DMH or DMH-CBD) is a synthetic homologue of cannabidiol where the pentyl chain has been replaced by a dimethylheptyl chain. Several isomers of this compound are known. The most commonly used isomer in research is (−)-CBD-DMH, which has the same stereochemistry as natural cannabidiol, and a 1,1-dimethylheptyl side chain. This compound is not psychoactive and acts primarily as an anandamide reuptake inhibitor, but is more potent than cannabidiol as an anticonvulsant and has around the same potency as an antiinflammatory. Unexpectedly the “unnatural” enantiomer (+)-CBD-DMH, which has reversed stereochemistry from cannabidiol, was found to be a directly acting cannabinoid receptor agonist with a Ki of 17.4nM at CB1 and 211nM at CB2, and produces typical cannabinoid effects in animal studies, as does its 7-OH derivative.

Chemical compounds that come as mirror-image pairs are referred to by chemists as chiral or handed molecules. Each twin is called an enantiomer. Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are called racemic drugs and these are obviously devoid of optical rotation. The most commonly encountered stereogenic unit, that confers chirality to drug molecules are stereogenic center. Stereogenic center can be due to the presence of tetrahedral tetra coordinate atoms (C,N,P) and pyramidal tricoordinate atoms (N,S). The word chiral describes the three-dimensional architecture of the molecule and does not reveal the stereochemical composition. Hence "chiral drug" does not say whether the drug is racemic, single enantiomer or some other combination of stereoisomers. To resolve this issue Joseph Gal introduced a new term called unichiral. Unichiral indicates that the stereochemical composition of a chiral drug is homogenous consisting of a single enantiomer.

<span class="mw-page-title-main">CHEB</span> Convulsant barbiturate

CHEB, also known as BRN 0250312 is a convulsant barbiturate. Its mechanism of action is not fully understood.

<span class="mw-page-title-main">CGP-39551</span> Competitive NMDA receptor antagonist

CGP-39551 is a drug used in scientific research, it is investigated as an anti-convulsant.

References

  1. "Diberal". PubChem. U.S. National Library of Medicine.
  2. Suddock JT, Kent KJ, Regina AC, Cain MD (2024). "Barbiturate Toxicity". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID   29763050.
  3. 1 2 Ho IK, Harris RA (1981). "Mechanism of action of barbiturates" (PDF). Annual Review of Pharmacology and Toxicology. 21: 83–111. doi:10.1146/annurev.pa.21.040181.000503. PMID   6263177.
  4. Desai R, Savechenkov PY, Zolkowska D, Ge RL, Rogawski MA, Bruzik KS, et al. (November 2015). "Contrasting actions of a convulsant barbiturate and its anticonvulsant enantiomer on the α1 β3 γ2L GABAA receptor account for their in vivo effects". The Journal of Physiology. 593 (22): 4943–4961. doi:10.1113/JP270971. PMC   4650410 . PMID   26378885.
  5. Downes H, Perry RS, Ostlund RE, Karler R (December 1970). "A study of the excitatory effects of barbiturates". The Journal of Pharmacology and Experimental Therapeutics. 175 (3): 692–699. PMID   5489924.