Valinomycin

Last updated

Contents

Valinomycin
Valinomycin.svg
Valinomycin 3D ball.png
Names
IUPAC name
cyclo[N-oxa-D-alanyl-D-valyl-N-oxa-L-valyl-D-valyl-N-oxa-D-alanyl-D-valyl-N-oxa-L-valyl-L-valyl-N-oxa-L-alanyl-L-valyl-N-oxa-L-valyl-L-valyl]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.016.270 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 217-896-6
PubChem CID
UNII
UN number 2811 2588
  • InChI=1S/C54H90N6O18/c1-22(2)34-49(67)73-31(19)43(61)55-38(26(9)10)53(71)77-41(29(15)16)47(65)59-36(24(5)6)51(69)75-33(21)45(63)57-39(27(11)12)54(72)78-42(30(17)18)48(66)60-35(23(3)4)50(68)74-32(20)44(62)56-37(25(7)8)52(70)76-40(28(13)14)46(64)58-34/h22-42H,1-21H3,(H,55,61)(H,56,62)(H,57,63)(H,58,64)(H,59,65)(H,60,66)/t31-,32-,33-,34+,35+,36+,37-,38-,39-,40+,41+,42+/m0/s1 X mark.svgN
    Key: FCFNRCROJUBPLU-DNDCDFAISA-N X mark.svgN
  • InChI=1S/C54H90N6O18/c1-22(2)34-49(67)73-31(19)43(61)55-38(26(9)10)53(71)77-41(29(15)16)47(65)59-36(24(5)6)51(69)75-33(21)45(63)57-39(27(11)12)54(72)78-42(30(17)18)48(66)60-35(23(3)4)50(68)74-32(20)44(62)56-37(25(7)8)52(70)76-40(28(13)14)46(64)58-34/h22-42H,1-21H3,(H,55,61)(H,56,62)(H,57,63)(H,58,64)(H,59,65)(H,60,66)/t31-,32-,33+,34-,35+,36+,37-,38-,39+,40+,41+,42+/m1/s1
    Key: FCFNRCROJUBPLU-DNDCDFAIBE
  • [1] :C[C@@H]1C(=O)N[C@@H](C(=O)O[C@H](C(=O)N[C@@H](C(=O)O[C@@H](C(=O)N[C@@H](C(=O)O[C@H](C(=O)N[C@H](C(=O)O[C@H](C(=O)N[C@H](C(=O)O[C@H](C(=O)N[C@H](C(=O)O1)C(C)C)C(C)C)C(C)C)C)C(C)C)C(C)C)C(C)C)C)C(C)C)C(C)C)C(C)C
Properties
C54H90N6O18
Molar mass 1111.32 g/mol
AppearanceWhite solid
Melting point 190 °C (374 °F; 463 K)
Solubility Methanol, ethanol, ethyl acetate, petrol-ether, dichloromethane
UV-vismax)220 nm
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Neurotoxicant
GHS labelling:
GHS-pictogram-skull.svg
Danger
H300, H310
P262, P264, P270, P280, P301+P310, P302+P350, P310, P321, P322, P330, P361, P363, P405, P501
Lethal dose or concentration (LD, LC):
4 mg/kg (oral, rat) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Valinomycin is a naturally occurring dodecadepsipeptide used in the transport of potassium and as an antibiotic. Valinomycin is obtained from the cells of several Streptomyces species, S. fulvissimus being a notable one.

It is a member of the group of natural neutral ionophores because it does not have a residual charge. It consists of enantiomers D- and L-valine (Val), D-alpha-hydroxyisovaleric acid, and L-lactic acid. Structures are alternately bound via amide and ester bridges. Valinomycin is highly selective for potassium ions over sodium ions within the cell membrane. [2] It functions as a potassium-specific transporter and facilitates the movement of potassium ions through lipid membranes "down" the electrochemical potential gradient. [3] The stability constant K for the potassium-valinomycin complex is nearly 100,000 times larger than that of the sodium-valinomycin complex. [4] This difference is important for maintaining the selectivity of valinomycin for the transport of potassium ions (and not sodium ions) in biological systems.

It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. [5]

Structure

Valinomycin is a dodecadepsipeptide, that is, it is made of twelve alternating amino acids and esters to form a macrocyclic molecule. The twelve carbonyl groups are essential for the binding of metal ions, and also for solvation in polar solvents. The isopropyl and methyl groups are responsible for solvation in nonpolar solvents. [6] Along with its shape and size this molecular duality is the main reason for its binding properties. K ions must give up their water of hydration to pass through the pore. K+ ions are octahedrally coordinated in a square bipyramidal geometry by 6 carbonyl bonds from Val. In this space of 1.33 Angstrom, Na+ with its 0.95 Angstrom radius, is significantly smaller than the channel, meaning that Na+ cannot form ionic bonds with the amino acids of the pore at equivalent energy as those it gives up with the water molecules. This leads to a 10,000x selectivity for K+ ions over Na+. For polar solvents, valinomycin will mainly expose the carbonyls to the solvent and in nonpolar solvents the isopropyl groups are located predominantly on the exterior of the molecule. This conformation changes when valinomycin is bound to a potassium ion. The molecule is "locked" into a conformation with the isopropyl groups on the exterior [Citation Needed]. It is not actually locked into configuration because the size of the molecule makes it highly flexible, but the potassium ion gives some degree of coordination to the macromolecule.

Applications

Valinomycin was recently reported to be the most potent agent against severe acute respiratory-syndrome coronavirus (SARS-CoV) in infected Vero E6 cells. [7] Valinomycin has been shown to inhibit completely vaccinia virus in cell based assay in human cell line. [8]

Valinomycin acts as a nonmetallic isoforming agent in potassium selective electrodes. [9] [10]

This ionophore is used to study membrane vesicles, where it may be selectively applied by experimental design to reduce or eliminate the electrochemical gradient across a membrane.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Ion channel</span> Pore-forming membrane protein

Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells. Ion channels are one of the two classes of ionophoric proteins, the other being ion transporters.

In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, without energy.

<span class="mw-page-title-main">Transmembrane protein</span> Protein spanning across a biological membrane

A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequently undergo significant conformational changes to move a substance through the membrane. They are usually highly hydrophobic and aggregate and precipitate in water. They require detergents or nonpolar solvents for extraction, although some of them (beta-barrels) can be also extracted using denaturing agents.

<span class="mw-page-title-main">Semipermeable membrane</span> Membrane which will allow certain molecules or ions to pass through it by diffusion

Semipermeable membrane is a type of synthetic or biologic, polymeric membrane that allows certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecules or solutes on either side, as well as the permeability of the membrane to each solute. Depending on the membrane and the solute, permeability may depend on solute size, solubility, properties, or chemistry. How the membrane is constructed to be selective in its permeability will determine the rate and the permeability. Many natural and synthetic materials which are rather thick are also semipermeable. One example of this is the thin film on the inside of an egg.

A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins; that is they exist permanently within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion, active transport, osmosis, or reverse diffusion. The two main types of proteins involved in such transport are broadly categorized as either channels or carriers. Examples of channel/carrier proteins include the GLUT 1 uniporter, sodium channels, and potassium channels. The solute carriers and atypical SLCs are secondary active or facilitative transporters in humans. Collectively membrane transporters and channels are known as the transportome. Transportomes govern cellular influx and efflux of not only ions and nutrients but drugs as well.

<span class="mw-page-title-main">Membrane potential</span> Electric potential difference between interior and exterior of a biological cell

Membrane potential is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is the energy per charge which is required to move a positive charge at constant velocity across the cell membrane from the exterior to the interior.

<span class="mw-page-title-main">Nonactin</span> Chemical compound

Nonactin is a member of a family of naturally occurring cyclic ionophores known as the macrotetrolide antibiotics. The other members of this homologous family are monactin, dinactin, trinactin and tetranactin which are all neutral ionophoric substances and higher homologs of nonactin. Collectively, this class is known as the nactins. Nonactin is soluble in methanol, dichloromethane, ethyl acetate and DMSO, but insoluble in water.

In cellular biology, membrane transport refers to the collection of mechanisms that regulate the passage of solutes such as ions and small molecules through biological membranes, which are lipid bilayers that contain proteins embedded in them. The regulation of passage through the membrane is due to selective membrane permeability – a characteristic of biological membranes which allows them to separate substances of distinct chemical nature. In other words, they can be permeable to certain substances but not to others.

Inorganic ions in animals and plants are ions necessary for vital cellular activity. In body tissues, ions are also known as electrolytes, essential for the electrical activity needed to support muscle contractions and neuron activation. They contribute to osmotic pressure of body fluids as well as performing a number of other important functions. Below is a list of some of the most important ions for living things as well as examples of their functions:

<span class="mw-page-title-main">Potassium channel</span> Ion channel that selectively passes K+

Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of cell functions.

<span class="mw-page-title-main">Antiporter</span> Class of transmembrane transporter protein

An antiporter is an integral membrane protein that uses secondary active transport to move two or more molecules in opposite directions across a phospholipid membrane. It is a type of cotransporter, which means that uses the energetically favorable movement of one molecule down its electrochemical gradient to power the energetically unfavorable movement of another molecule up its electrochemical gradient. This is in contrast to symporters, which are another type of cotransporter that moves two or more ions in the same direction, and primary active transport, which is directly powered by ATP.

<span class="mw-page-title-main">Voltage-gated ion channel</span> Type of ion channel transmembrane protein

Voltage-gated ion channels are a class of transmembrane proteins that form ion channels that are activated by changes in a cell's electrical membrane potential near the channel. The membrane potential alters the conformation of the channel proteins, regulating their opening and closing. Cell membranes are generally impermeable to ions, thus they must diffuse through the membrane through transmembrane protein channels.

<span class="mw-page-title-main">Gramicidin</span> Mix of ionophoric antibiotics

Gramicidin, also called gramicidin D, is a mix of ionophoric antibiotics, gramicidin A, B and C, which make up about 80%, 5%, and 15% of the mix, respectively. Each has 2 isoforms, so the mix has 6 different types of gramicidin molecules. They can be extracted from Brevibacillus brevis soil bacteria. Gramicidins are linear peptides with 15 amino acids. This is in contrast to unrelated gramicidin S, which is a cyclic peptide.

<span class="mw-page-title-main">Ionophore</span> Chemical entity that reversibly binds ions

In chemistry, an ionophore is a chemical species that reversibly binds ions. Many ionophores are lipid-soluble entities that transport ions across the cell membrane. Ionophores catalyze ion transport across hydrophobic membranes, such as liquid polymeric membranes or lipid bilayers found in the living cells or synthetic vesicles (liposomes). Structurally, an ionophore contains a hydrophilic center and a hydrophobic portion that interacts with the membrane.

<span class="mw-page-title-main">Voltage-gated potassium channel</span> Class of transport proteins

Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized cell to a resting state.

Two-pore channels (TPCs) are eukaryotic intracellular voltage-gated and ligand gated cation selective ion channels. There are two known paralogs in the human genome, TPC1s and TPC2s. In humans, TPC1s are sodium selective and TPC2s conduct sodium ions, calcium ions and possibly hydrogen ions. Plant TPC1s are non-selective channels. Expression of TPCs are found in both plant vacuoles and animal acidic organelles. These organelles consist of endosomes and lysosomes. TPCs are formed from two transmembrane non-equivalent tandem Shaker-like, pore-forming subunits, dimerized to form quasi-tetramers. Quasi-tetramers appear very similar to tetramers, but are not quite the same. Some key roles of TPCs include calcium dependent responses in muscle contraction(s), hormone secretion, fertilization, and differentiation. Disorders linked to TPCs include membrane trafficking, Parkinson's disease, Ebola, and fatty liver.

A polarized membrane is a lipid membrane that has a positive electrical charge on one side and a negative charge on another side, which produces the resting potential in living cells. Whether or not a membrane is polarized is determined by the distribution of dissociable protons and permeant ions inside and outside the membrane that travel passively through ion channel or actively via ion pump, creating an action potential.

<span class="mw-page-title-main">Channel blocker</span> Molecule able to block protein channels, frequently used as pharmaceutical

A channel blocker is the biological mechanism in which a particular molecule is used to prevent the opening of ion channels in order to produce a physiological response in a cell. Channel blocking is conducted by different types of molecules, such as cations, anions, amino acids, and other chemicals. These blockers act as ion channel antagonists, preventing the response that is normally provided by the opening of the channel.

<span class="mw-page-title-main">Synthetic ion channels</span>

Synthetic ion channels are de novo chemical compounds that insert into lipid bilayers, form pores, and allow ions to flow from one side to the other. They are man-made analogues of natural ion channels, and are thus also known as artificial ion channels. Compared to biological channels, they usually allow fluxes of similar magnitude but are

  1. minuscule in size,
  2. diverse in molecular architecture, and
  3. may rely on diverse supramolecular interactions to pre-form the active, conducting structures.
<span class="mw-page-title-main">KcsA potassium channel</span> Prokaryotic potassium ion channel

KcsA (K channel of streptomyces A) is a prokaryotic potassium channel from the soil bacterium Streptomyces lividans that has been studied extensively in ion channel research. The pH activated protein possesses two transmembrane segments and a highly selective pore region, responsible for the gating and shuttling of K+ ions out of the cell. The amino acid sequence found in the selectivity filter of KcsA is highly conserved among both prokaryotic and eukaryotic K+ voltage channels; as a result, research on KcsA has provided important structural and mechanistic insight on the molecular basis for K+ ion selection and conduction. As one of the most studied ion channels to this day, KcsA is a template for research on K+ channel function and its elucidated structure underlies computational modeling of channel dynamics for both prokaryotic and eukaryotic species.

References

  1. 1 2 3 "ChemIDplus - 2001-95-8 - FCFNRCROJUBPLU-DNDCDFAISA-N - Valinomycin - Similar structures search, synonyms, formulas, resource links, and other chemical information". TOXNET . U.S. National Library of Medicine. Archived from the original on 20 December 2015.
  2. Lars, Rose, Jenkins ATA (2007). "The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes". Bioelectrochemistry. 70 (2): 387–393. doi:10.1016/j.bioelechem.2006.05.009. PMID   16875886.
  3. Cammann K (1985). "Ion-selective bulk membranes as models". Top. Curr. Chem. Topics in Current Chemistry. 128: 219–258. doi:10.1007/3-540-15136-2_8. ISBN   978-3-540-15136-4.
  4. Rose MC, Henkens RW (1974). "Stability of sodium and potassium complexes of valinomycin". Biochimica et Biophysica Acta (BBA) - General Subjects . 372 (2): 426–435. doi:10.1016/0304-4165(74)90204-9.
  5. "40 C.F.R.: Appendix A to Part 355—The List of Extremely Hazardous Substances and Their Threshold Planning Quantities" (PDF) (July 1, 2008 ed.). Government Printing Office. Archived (PDF) from the original on February 25, 2012. Retrieved October 29, 2011.
  6. Thompson M, Krull UJ (1982). "The electroanalytical response of the bilayer lipid membrane to valinomycin: membrane cholesterol content". Anal. Chim. Acta . 141: 33–47. Bibcode:1982AcAC..141...33T. doi:10.1016/S0003-2670(01)95308-5.
  7. Zhang D, Ma Z, Chen H, Lu Y, Chen X (October 2020). "Valinomycin as a potential antiviral agent against coronaviruses: A review". Biomedical Journal. 43 (5): 414–423. doi: 10.1016/j.bj.2020.08.006 . ISSN   2319-4170. PMC   7417921 . PMID   33012699.
  8. Witwit H, Cubitt B, Khafaji R, Castro EM, Goicoechea M, Lorenzo MM, Blasco R, Martinez-Sobrido L, de la Torre JC (January 2025). "Repurposing Drugs for Synergistic Combination Therapies to Counteract Monkeypox Virus Tecovirimat Resistance". Viruses. 17 (1): 92. doi: 10.3390/v17010092 . ISSN   1999-4915.
  9. Safiulina D, Veksler V, Zharkovsky A, Kaasik A (2006). "Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones". J. Cell. Physiol. 206 (2): 347–353. doi:10.1002/jcp.20476. PMID   16110491. S2CID   34918061.
  10. "Potassium ionophore Bulletin" (PDF). Archived (PDF) from the original on 2012-03-15. Retrieved 2009-05-19.