Clinical data | |
---|---|
Trade names | Merrem, others |
AHFS/Drugs.com | Monograph |
License data | |
Pregnancy category |
|
Routes of administration | Intravenous |
ATC code | |
Legal status | |
Legal status | |
Pharmacokinetic data | |
Bioavailability | 100% |
Protein binding | Approximately 2% |
Elimination half-life | 1 hour |
Excretion | Kidney |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
PDB ligand | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.169.299 |
Chemical and physical data | |
Formula | C17H25N3O5S |
Molar mass | 383.46 g·mol−1 |
3D model (JSmol) | |
| |
| |
(verify) |
Meropenem, sold under the brand name Merrem among others, is an intravenous carbapenem antibiotic used to treat a variety of bacterial infections. [3] Some of these include meningitis, intra-abdominal infection, pneumonia, sepsis, and anthrax. [3]
Common side effects include nausea, diarrhea, constipation, headache, rash, and pain at the site of injection. [3] Serious side effects include Clostridioides difficile infection, seizures, and allergic reactions including anaphylaxis. [3] Those who are allergic to other β-lactam antibiotics are more likely to be allergic to meropenem as well. [3] Use in pregnancy appears to be safe. [3] It is in the carbapenem family of medications. [3] Meropenem usually results in bacterial death through blocking their ability to make a cell wall. [3] It is resistant to breakdown by many kinds of β-lactamase enzymes, produced by bacteria to protect themselves from antibiotics. [4] [5] [6]
Meropenem was patented in 1983. [7] It was approved for medical use in the United States in 1996. [3] It is on the World Health Organization's List of Essential Medicines. [8] [9] The World Health Organization classifies meropenem as critically important for human medicine. [10]
The spectrum of action includes many Gram-positive and Gram-negative bacteria (including Pseudomonas ) and anaerobic bacteria. The overall spectrum is similar to that of imipenem, although meropenem is more active against Enterobacteriaceae and less active against Gram-positive bacteria. Meropenem is effective against bacteria producing extended-spectrum β-lactamases but may be more susceptible to hydrolysis by metallo-β-lactamases produced by bacteria. [11] β-lactamases are enzymes that bacteria produce to hydrolyze β-lactam antibiotics, breaking the β-lactam ring and rendering these antibiotics ineffective. This mechanism helps bacteria resist the effects of antibiotics like penicillins, cephalosporins, and carbapenems, making treatment more challenging. [12] [13] [14] While β-lactam ring in meropenem is more accessible to water molecules than in the other β-lactam antibiotics, that facilitates the hydrolysis process and faster degradation of meropenem's antibacterial properties in aqueous solutions, it is more resistant to degradation by β-lactamase enzymes produced by bacteria than the other β-lactam antibiotics. [15] [4]
Meropenem is frequently given in the treatment of febrile neutropenia. This condition frequently occurs in patients with hematological malignancies and cancer patients receiving anticancer drugs that suppress bone marrow formation. It is approved for complicated skin and skin structure infections, complicated intra-abdominal infections and bacterial meningitis. [4] [16] [17] [18]
Meropenem is effective in treating bacterial pneumonia, including hospital-acquired pneumonia. [19]
In 2017, the U.S. Food and Drug Administration (FDA) granted approval for the combination of meropenem and vaborbactam to treat adults with complicated urinary tract infections. [20]
Meropenem is administered intravenously as an aqueous solution. Meropenem is stored in vials as white crystalline powder (containing meropenem as the trihydrate blended with anhydrous sodium carbonate). [21] [22] [23] For intravenous administration, if pure meropenem powder is used (rather than the powder blended with sodium carbonate), meropenem is dissolved in 5% monobasic potassium phosphate solution, since meropenem is soluble in 5% monobasic potassium phosphate solution and only sparingly soluble in water [22] (5.63 mg/mL). [24] [25] [26] For intravenous bolus administration, injection vials (that contain meropenem blended with sodium carbonate) are reconstituted with sterile water for injection. [21] [22] [24]
Reconstituted (dissolved) meropenem degrades over time. [27] [28] [29] [30] The degradation may be associated with color change of the solution, typical for a hydrolysis of the amide bond of the β-lactam ring as seen with most β-lactam antibiotics, [31] while particularly for meropenem the color is changing from colorless or pale yellow to vivid yellowish. [32] Upon reconstitution, the meropenem infusion solution, prepared with 0.9% sodium chloride, exhibits both chemical and physical stability for a duration of 3 hours at a temperature up to 25°C. If refrigerated (2–8°C), the stability extends to 24 hours. However, when the product is reconstituted in a 5% dextrose solution, it is used immediately to ensure its efficacy. [27] The degradation of meropenem in a water-based solution is affected by factors such as pH, temperature, initial concentration, and the specific type of infusion solution used. [32] Meropenem solutions should not be frozen. [33] [34]
There is a bit of a paradox with meropenem that the amide bond in the β-lactam ring of meropenem makes it resistant to many β-lactamases (penicillinases), which are enzymes produced by bacteria that can break down penicillin and related antibiotics such as meropenem. [35] [36] This resistance is due to the stability of the β-lactam ring in meropenem, which is less susceptible to hydrolysis by these enzymes. [37] However, meropenem is not stable in the presence of water. [38] [39] It can undergo hydrolysis in aqueous solutions, which can reduce its effectiveness. [40] This means that while meropenem is designed to resist bacterial enzymes, it can still be broken down by water, which is a bit ironic. [41] That's why meropenem requires frequent or prolonged slow administration to supply new drug to the bloodstream to replace what was hydrolyzed by the water component of blood. [42] [43]
Meropenem is administered every 8 hours. [24]
Dosing must be adjusted for altered kidney function and for haemofiltration. [44]
Studies describe application of meropenem therapeutic drug monitoring (measurements of drug levels in the bloodstream at specific intervals) for optimal application. [45] [46]
As with other β-lactams antibiotics, the effectiveness of treatment depends on the amount of time during the dosing interval that the meropenem concentration is above the minimum inhibitory concentration for the bacteria causing the infection. [47] For β-lactams, including meropenem, prolonged intravenous administration is associated with lower mortality compared to bolus intravenous infusion, especially in severe infections or those caused by less sensitive bacteria, such as Pseudomonas aeruginosa . [47] [48]
Meropenem exhibits poor permeability across the gut and low oral bioavailability because of its hydrophilic properties, which inhibit its passive diffusion across the intestinal epithelium. [49] The challenges related to research of oral delivery of meropenem are related to high susceptibility of meropenem to degradation through hydrolysis of the amide bond in the β-lactam ring, even at relatively low temperatures and humidity. [49] This instability can result in the loss of meropenem's antibacterial activity. Besides that, meropenem is unstable in the acidic environment of the stomach, leading to extensive degradation and loss of the drug after oral administration. [49] In addition, intestinal efflux (secretory) transport can pump the drug back into the gut: efflux transporters, particularly P-glycoprotein (P-gp), present in the gastrointestinal tract can actively pump meropenem back into the gut lumen, limiting its absorption and reducing oral bioavailability; in the attempts of oral administration bacteria can develop resistance to meropenem by enhancing the active efflux of the antibiotic through efflux transporters, such as the MexAB-OprM tripartite efflux system in Pseudomonas aeruginosa. [49] That's why meropenem is administered intravenously. [49] [50]
There is insufficient data regarding the administration of meropenem during breastfeeding. However, it has been observed that, in general, the concentration of this β-lactam antibiotic in breast milk is relatively low, therefore, β-lactam antibiotics are not anticipated to induce detrimental effects in infants who are breastfed. Nonetheless, there have been sporadic reports of disturbances in the gastrointestinal flora of the infant, manifesting as diarrhea or oral candidiasis (thrush), associated with the use of β-lactam antibiotics, however, these potential side effects have not been thoroughly investigated specifically in the context of meropenem use, therefore, the safety profile of meropenem in breastfeeding mothers and their infants is unknown. [51]
Although meropenem is not approved for intramuscular or subcutaneous routes of administration in humans, there were studies that evaluated the drug bioavailability in cats and reported bioavailability of 99.69% for intramuscular route and 96.52 % for subcutaneous route of administration; these studies also compared elimination half-lives for intravenous, intramuscular or subcutaneous routes of administration in cats and reported duration of 1.35, 2.10 and 2.26 hours, respectively. [52] There was also a small study on local tolerance of meropenem intramuscular administration in humans, and it was reported as generally good. [52] [53] [54]
Among antibiotic drugs, meropenem is relatively safe. [4] [46] The most common adverse effects are diarrhea (4.8%), nausea and vomiting (3.6%), injection-site inflammation (2.4%), headache (2.3%), rash (1.9%) and thrombophlebitis (0.9%). [55] Many of these adverse effects were observed in severely ill individuals already taking many medications including vancomycin. [56] [57] Meropenem has a reduced potential for seizures in comparison with imipenem. Several cases of severe hypokalemia have been reported. [58] [59]
Meropenem rapidly reduces serum concentrations of valproic acid. As a result, people who use valproic acid for epilepsy are at increased risk of seizures during treatment with meropenem. In situations where the use of meropenem cannot be avoided, prescription of an additional anticonvulsant should be considered. [60]
Meropenem is bactericidal except against Listeria monocytogenes , where it is bacteriostatic. It inhibits bacterial cell wall synthesis like other β-lactam antibiotics. In contrast to other β-lactams, it is highly resistant to degradation by β-lactamases or cephalosporinases. In general, resistance arises due to mutations in penicillin-binding proteins, production of metallo-β-lactamases, or resistance to diffusion across the bacterial outer membrane. [55] Unlike imipenem, it is stable to dehydropeptidase-1, so can be given without cilastatin. [61]
In 2016, a synthetic peptide-conjugated PMO (PPMO) was found to inhibit the expression of New Delhi metallo-beta-lactamase 1, an enzyme that many drug-resistant bacteria use to destroy carbapenems. [62] [63]
Nebulized meropenem (inhaled route) is researched, but is not approved, for prevention of bronchiectasis exacerbation. [64]
Country | Name | Maker |
---|---|---|
India | UNOMERO | Scutonix Lifesciences, Bombay |
India | Inzapenum | Dream India |
Aurobindo Pharma | ||
Penmer | Biocon | |
Meronir | Nirlife | |
Merowin | Strides Acrolab | |
Aktimer | Aktimas Biopharmaceuticals | |
Neopenem | Neomed | |
Mexopen | Samarth life sciences | |
Meropenia | SYZA Health Sciences LLP | |
Ivpenem | Medicorp Pharmaceuticals | |
Merofit | ||
Lykapiper | Lyka Labs | |
Winmero | Parabolic Drugs | |
Bangladesh | ||
Meroject | Eskayef Pharmaceuticals Ltd. | |
Merocon | Beacon Pharmaceuticals | |
Indonesia | Merofen | Kalbe |
Brazil | Zylpen | Aspen Pharma |
Japan, Korea | Meropen | |
Australia | Merem | |
Taiwan | Mepem | |
Germany | Meronem | |
Nigeria | Zironem | Lyn-Edge Pharmaceuticals |
Ukraine [65] | Meropenem | Lekhim-Kharkiv |
Panlaktam (Panlaktam) | "Darnytsia" | |
Mepenam | Kyivmedpreparat | |
Merobicide | Borshchahiv HFZ | |
US | Meronem | AstraZeneca |
Indonesia | Merosan | Sanbe Farma |
Indonesia | Merobat | Interbat |
Zwipen | ||
Carbonem | ||
Ronem | Opsonin Pharma, BD | |
Neopenem | ||
Merocon | Continental | |
Carnem | Laderly Biotech | |
Penro | Bosch | |
Meroza | German Remedies | |
Merotrol | Lupin) | |
Meromer | Orchid Chemicals | |
Mepenox | BioChimico | |
Meromax | Eurofarma | |
Ropen | Macter | |
mirage | adwic | |
Meropex | Apex Pharma Ltd. | |
Merostarkyl | Hefny Pharma Group [66] |
Beta-lactamases (β-lactamases) are enzymes produced by bacteria that provide multi-resistance to beta-lactam antibiotics such as penicillins, cephalosporins, cephamycins, monobactams and carbapenems (ertapenem), although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a beta-lactam (β-lactam) ring. Through hydrolysis, the enzyme lactamase breaks the β-lactam ring open, deactivating the molecule's antibacterial properties.
β-Lactam antibiotics are antibiotics that contain a β-lactam ring in their chemical structure. This includes penicillin derivatives (penams), cephalosporins and cephamycins (cephems), monobactams, carbapenems and carbacephems. Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism and are the most widely used group of antibiotics. Until 2003, when measured by sales, more than half of all commercially available antibiotics in use were β-lactam compounds. The first β-lactam antibiotic discovered, penicillin, was isolated from a strain of Penicillium rubens.
Ertapenem, sold under the brand name Invanz, is a carbapenem antibiotic medication used for the treatment of infections of the abdomen, the lungs, the upper part of the female reproductive system, and the diabetic foot.
Aztreonam, sold under the brand name Azactam among others, is an antibiotic used primarily to treat infections caused by gram-negative bacteria such as Pseudomonas aeruginosa. This may include bone infections, endometritis, intra abdominal infections, pneumonia, urinary tract infections, and sepsis. It is given by intravenous or intramuscular injection or by inhalation.
Amoxicillin/clavulanic acid, also known as co-amoxiclav or amox-clav, sold under the brand name Augmentin, among others, is an antibiotic medication used for the treatment of a number of bacterial infections. It is a combination consisting of amoxicillin, a β-lactam antibiotic, and potassium clavulanate, a β-lactamase inhibitor. It is specifically used for otitis media, streptococcal pharyngitis, pneumonia, cellulitis, urinary tract infections, and animal bites. It is taken by mouth or by injection into a vein.
Piperacillin is a broad-spectrum β-lactam antibiotic of the ureidopenicillin class. The chemical structure of piperacillin and other ureidopenicillins incorporates a polar side chain that enhances penetration into Gram-negative bacteria and reduces susceptibility to cleavage by Gram-negative beta lactamase enzymes. These properties confer activity against the important hospital pathogen Pseudomonas aeruginosa. Thus piperacillin is sometimes referred to as an "anti-pseudomonal penicillin".
Piperacillin/tazobactam, sold under the brand name Tazocin among others, is a combination medication containing the antibiotic piperacillin and the β-lactamase inhibitor tazobactam. The combination has activity against many Gram-positive and Gram-negative bacteria including Pseudomonas aeruginosa. It is used to treat pelvic inflammatory disease, intra-abdominal infection, pneumonia, cellulitis, and sepsis. It is given by injection into a vein.
Carbapenems are a class of very effective antibiotic agents most commonly used for treatment of severe bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta-lactam antibiotics drug class, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.
Imipenem is a synthetic β-lactam antibiotic belonging to the carbapenems chemical class. developed by Merck scientists Burton Christensen, William Leanza, and Kenneth Wildonger in the mid-1970s. Carbapenems are highly resistant to the β-lactamase enzymes produced by many multiple drug-resistant Gram-negative bacteria, thus playing a key role in the treatment of infections not readily treated with other antibiotics. It is usually administered through intravenous injection.
Temocillin is a β-lactamase-resistant penicillin introduced by Beecham, marketed by Eumedica Pharmaceuticals as Negaban. It is used primarily for the treatment of multiple drug-resistant, Gram-negative bacteria.
It is a 6-methoxy penicillin; it is also a carboxypenicillin.
Doripenem is an antibiotic drug in the carbapenem class. It is a beta-lactam antibiotic drug able to kill Pseudomonas aeruginosa.
Beta-lactamases are a family of enzymes involved in bacterial resistance to beta-lactam antibiotics. In bacterial resistance to beta-lactam antibiotics, the bacteria have beta-lactamase which degrade the beta-lactam rings, rendering the antibiotic ineffective. However, with beta-lactamase inhibitors, these enzymes on the bacteria are inhibited, thus allowing the antibiotic to take effect. Strategies for combating this form of resistance have included the development of new beta-lactam antibiotics that are more resistant to cleavage and the development of the class of enzyme inhibitors called beta-lactamase inhibitors. Although β-lactamase inhibitors have little antibiotic activity of their own, they prevent bacterial degradation of beta-lactam antibiotics and thus extend the range of bacteria the drugs are effective against.
Carbapenem-resistant Enterobacteriaceae (CRE) or carbapenemase-producing Enterobacteriaceae (CPE) are gram-negative bacteria that are resistant to the carbapenem class of antibiotics, considered the drugs of last resort for such infections. They are resistant because they produce an enzyme called a carbapenemase that disables the drug molecule. The resistance can vary from moderate to severe. Enterobacteriaceae are common commensals and infectious agents. Experts fear CRE as the new "superbug". The bacteria can kill up to half of patients who get bloodstream infections. Tom Frieden, former head of the Centers for Disease Control and Prevention has referred to CRE as "nightmare bacteria". Examples of enzymes found in certain types of CRE are KPC and NDM. KPC and NDM are enzymes that break down carbapenems and make them ineffective. Both of these enzymes, as well as the enzyme VIM have also been reported in Pseudomonas.
Avibactam is a non-β-lactam β-lactamase inhibitor developed by Actavis jointly with AstraZeneca. A new drug application for avibactam in combination with ceftazidime was approved by the FDA on February 25, 2015, for treating complicated urinary tract (cUTI) and complicated intra-abdominal infections (cIAI) caused by antibiotic resistant-pathogens, including those caused by multi-drug resistant Gram-negative bacterial pathogens.
Ceftolozane/tazobactam, sold under the brand name Zerbaxa, (Merck) is a fixed-dose combination antibiotic medication used for the treatment of complicated urinary tract infections and complicated intra-abdominal infections in adults. Ceftolozane is a cephalosporin antibiotic, developed for the treatment of infections with gram-negative bacteria that are resistant to conventional antibiotics. It was studied for urinary tract infections, intra-abdominal infections and ventilator-associated bacterial pneumonia.
Ceftazidime/avibactam, sold under the brand name Avycaz among others, is a fixed-dose combination medication composed of ceftazidime, a cephalosporin antibiotic, and avibactam, a β-lactamase inhibitor. It is used to treat complicated intra-abdominal infections, urinary tract infections, and pneumonia. It is only recommended when other options are not appropriate. It is given by infusion into a vein.
Vaborbactam (INN) is a non-β-lactam β-lactamase inhibitor discovered by Rempex Pharmaceuticals, a subsidiary of The Medicines Company. While not effective as an antibiotic by itself, it restores potency to existing antibiotics by inhibiting the β-lactamase enzymes that would otherwise degrade them. When combined with an appropriate antibiotic it can be used for the treatment of gram-negative bacterial infections.
Meropenem/vaborbactam, sold under the brand name Vabomere among others, is a combination medication used to treat complicated urinary tract infections, complicated abdominal infections, and hospital-acquired pneumonia. It contains meropenem, a beta-lactam antibiotic, and vaborbactam, a beta-lactamase inhibitor. It is given by injection into a vein.
Cefiderocol, sold under the brand name Fetroja among others, is an antibiotic used to treat complicated urinary tract infections when no other options are available. It is indicated for the treatment of multi-drug-resistant Gram-negative bacteria including Pseudomonas aeruginosa. It is given by injection into a vein.
Imipenem/cilastatin/relebactam, sold under the brand name Recarbrio(Merck), is a fixed-dose combination medication used as an antibiotic. In 2019, it was approved for use in the United States for the treatment of complicated urinary tract and complicated intra-abdominal infections. It is administered via intravenous injection.
As with other β-lactam antibiotics, meropenem is bactericidal against susceptible bacteria because it inhibits bacterial cell wall synthesis. The trans configuration of the hydroxyethyl side chain and hydrogen atoms protect the parent β-lactam structure from inactivation by the most common β-lactamases, including almost all Bush groups 1 and 2 (Amber classes A, C, and D) β-lactamase–producing organisms, including those that produce ESBLs (Citrobacter, Enterobacter, E. coli, Klebsiella spp., and P. mirabilis) or AmpC β-lactamases (Citrobacter, Enterobacter, Pseudomonas, and Serratia)