Lipopeptide

Last updated
Cyclic lipopeptide antibiotics
Identifiers
SymbolN/A
TCDB 1.D.15
OPM superfamily 163
OPM protein 1t5n

A lipopeptide is a molecule consisting of a lipid connected to a peptide. [1] They are able to self-assemble into different structures. [1] [2] [3] Many bacteria produce these molecules as a part of their metabolism, especially those of the genus Bacillus , Pseudomonas and Streptomyces . [4] Certain lipopeptides are used as antibiotics. [5] [6] Due to the structural and molecular properties such as the fatty acid chain, it poses the effect of weakening the cell function or destroying the cell. [7] [8] Other lipopeptides are toll-like receptor agonists. [3] Certain lipopeptides can have strong antifungal and hemolytic activities. [9] It has been demonstrated that their activity is generally linked to interactions with the plasma membrane, [10] and sterol components of the plasma membrane could play a major role in this interaction. [11] [12] It is a general trend that adding a lipid group of a certain length (typically C10–C12) to a lipopeptide will increase its bactericidal activity. [13] Lipopeptides with a higher amount of carbon atoms, for example 14 or 16, in its lipid tail will typically have antibacterial activity as well as anti-fungal activity. [13] Therefore, an increase in the alkyl chain can make lipopeptides soluble in water. [7] As well, it opens the cell membrane of the bacteria, so antimicrobial activity can take place. [14]

Contents

Lipopeptide detergents (LPDs) are composed of amphiphiles and two alkyl chains which are located on the last part of the peptide backbone. They were designed to mimic the architecture of the native membranes in which two alkyl chains in a lipid molecule facially interact with the hydrophobic segment of MPs. [15]

Examples

See also

Related Research Articles

<span class="mw-page-title-main">Polymyxin</span> Group of antibiotics

Polymyxins are antibiotics. Polymyxins B and E are used in the treatment of Gram-negative bacterial infections. They work mostly by breaking up the bacterial cell membrane. They are part of a broader class of molecules called nonribosomal peptides.

An antimicrobial is an agent that kills microorganisms (microbicide) or stops their growth. Antimicrobial medicines can be grouped according to the microorganisms they act primarily against. For example, antibiotics are used against bacteria, and antifungals are used against fungi. They can also be classified according to their function. The use of antimicrobial medicines to treat infection is known as antimicrobial chemotherapy, while the use of antimicrobial medicines to prevent infection is known as antimicrobial prophylaxis.

<span class="mw-page-title-main">Glycopeptide antibiotic</span> Class of antibiotic drugs

Glycopeptide antibiotics are a class of drugs of microbial origin that are composed of glycosylated cyclic or polycyclic nonribosomal peptides. Significant glycopeptide antibiotics include the anti-infective antibiotics vancomycin, teicoplanin, telavancin, ramoplanin and decaplanin, corbomycin, complestatin and the antitumor antibiotic bleomycin. Vancomycin is used if infection with methicillin-resistant Staphylococcus aureus (MRSA) is suspected.

<span class="mw-page-title-main">Daptomycin</span> Antibiotic

Daptomycin, sold under the brand name Cubicin among others, is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms.

<span class="mw-page-title-main">Defensin</span> Group of antimicrobial peptides

Defensins are small cysteine-rich cationic proteins across cellular life, including vertebrate and invertebrate animals, plants, and fungi. They are host defense peptides, with members displaying either direct antimicrobial activity, immune signaling activities, or both. They are variously active against bacteria, fungi and many enveloped and nonenveloped viruses. They are typically 18-45 amino acids in length, with three or four highly conserved disulphide bonds.

<span class="mw-page-title-main">Antimicrobial peptides</span> Class of peptides that have antimicrobial activity

Antimicrobial peptides (AMPs), also called host defence peptides (HDPs) are part of the innate immune response found among all classes of life. Fundamental differences exist between prokaryotic and eukaryotic cells that may represent targets for antimicrobial peptides. These peptides are potent, broad spectrum antimicrobials which demonstrate potential as novel therapeutic agents. Antimicrobial peptides have been demonstrated to kill Gram negative and Gram positive bacteria, enveloped viruses, fungi and even transformed or cancerous cells. Unlike the majority of conventional antibiotics it appears that antimicrobial peptides frequently destabilize biological membranes, can form transmembrane channels, and may also have the ability to enhance immunity by functioning as immunomodulators.

<span class="mw-page-title-main">Amphiphile</span> Hydrophilic and lipophilic chemical compound

An amphiphile, or amphipath, is a chemical compound possessing both hydrophilic and lipophilic (fat-loving) properties. Such a compound is called amphiphilic or amphipathic. Amphiphilic compounds include surfactants. The phospholipid amphiphiles are the major structural component of cell membranes.

<span class="mw-page-title-main">Dermcidin</span>

Dermcidin is a protein with 110 amino acids that in humans is encoded by the DCD gene. The full-length protein produces derived peptides as proteolysis-inducing factor (PIF) and other anti-microbial peptides, secreted by human eccrine sweat glands onto the skin as a part of the innate host defense of the immune system. PIF is involved in muscular proteolysis.

<span class="mw-page-title-main">Surfactin</span> Chemical compound

Surfactin is a cyclic lipopeptide, commonly used as an antibiotic for its capacity as a surfactant. It is an amphiphile capable of withstanding hydrophilic and hydrophobic environments. The Gram-positive bacterial species Bacillus subtilis produces surfactin for its antibiotic effects against competitors. Surfactin showcases antibacterial, antiviral, antifungal, and hemolytic effects.

Cathelicidin antimicrobial peptide (CAMP) is an antimicrobial peptide encoded in the human by the CAMP gene. The active form is LL-37. In humans, CAMP encodes the peptide precursor CAP-18, which is processed by proteinase 3-mediated extracellular cleavage into the active form LL-37.

<span class="mw-page-title-main">Plant defensin</span>

Plant defensins are a family of primitive, highly stable, cysteine-rich defensins found in plants that function to defend them against pathogens and parasites. Defensins are integral components of the innate immune system and belong to the ancient superfamily of antimicrobial peptides (AMPs). AMPs are also known as host defense peptides (HDPs), and they are thought to have diverged about 1.4 billion years ago before the evolution of prokaryotes and eukaryotes. They are ubiquitous in almost all plant species, functionally diverse, and their primary structure varies significantly from one species to the next, except for a few cysteine residues, which stabilize the protein structure through disulfide bond formation. Plant defensins usually have a net positive charge due to the abundance of cationic amino acids and are generally divided into two classes. Those in the class II category contain a C-terminal pro-peptide domain of approximately 33 amino acids and are targeted to the vacuole, while the class I defensins lack this domain and mature in the cell wall. Unlike their class I counterparts, class II plant defensins are relatively smaller, and their acidic C-terminal prodomain is hypothesized to contribute to their vacuolar targeting. The first plant defensins were discovered in barley and wheat in 1990 and were initially designated as γ-thionins. In 1995, the name was changed to 'plant defensin' when it was identified that they are evolutionarily unrelated to other thionins and were more similar to defensins from insects and mammals.

<span class="mw-page-title-main">Bactoprenol</span> Chemical compound

Bactoprenol also known as dolichol-11 and C55-isoprenyl alcohol (C55-OH) is a lipid first identified in certain species of lactobacilli. It is a hydrophobic alcohol that plays a key role in the growth of cell walls (peptidoglycan) in Gram-positive bacteria.

Protegrins are small peptides containing 16-18 amino acid residues. Protegrins were first discovered in porcine leukocytes and were found to have antimicrobial activity against bacteria, fungi, and some enveloped viruses. The amino acid composition of protegrins contains six positively charged arginine residues and four cysteine residues. Their secondary structure is classified as cysteine-rich β-sheet antimicrobial peptides, AMPs, that display limited sequence similarity to certain defensins and tachyplesins. In solution, the peptides fold to form an anti-parallel β-strand with the structure stabilized by two cysteine bridges formed among the four cysteine residues. Recent studies suggest that protegrins can bind to lipopolysaccharide, a property that may help them to insert into the membranes of gram-negative bacteria and permeabilize them.

Polymers with the ability to kill or inhibit the growth of microorganisms such as bacteria, fungi, or viruses are classified as antimicrobial agents. This class of polymers consists of natural polymers with inherent antimicrobial activity and polymers modified to exhibit antimicrobial activity. Polymers are generally nonvolatile, chemically stable, and can be chemically and physically modified to display desired characteristics and antimicrobial activity. Antimicrobial polymers are a prime candidate for use in the food industry to prevent bacterial contamination and in water sanitation to inhibit the growth of microorganisms in drinking water.

<span class="mw-page-title-main">Peptide amphiphile</span>

Peptide amphiphiles (PAs) are peptide-based molecules that self-assemble into supramolecular nanostructures including; spherical micelles, twisted ribbons, and high-aspect-ratio nanofibers. A peptide amphiphile typically comprises a hydrophilic peptide sequence attached to a lipid tail, i.e. a hydrophobic alkyl chain with 10 to 16 carbons. Therefore, they can be considered a type of lipopeptide. A special type of PA, is constituted by alternating charged and neutral residues, in a repeated pattern, such as RADA16-I. The PAs were developed in the 1990s and the early 2000s and could be used in various medical areas including: nanocarriers, nanodrugs, and imaging agents. However, perhaps their main potential is in regenerative medicine to culture and deliver cells and growth factors.

An antimicrobial surface is coated by an antimicrobial agent that inhibits the ability of microorganisms to grow on the surface of a material. Such surfaces are becoming more widely investigated for possible use in various settings including clinics, industry, and even the home. The most common and most important use of antimicrobial coatings has been in the healthcare setting for sterilization of medical devices to prevent hospital associated infections, which have accounted for almost 100,000 deaths in the United States. In addition to medical devices, linens and clothing can provide a suitable environment for many bacteria, fungi, and viruses to grow when in contact with the human body which allows for the transmission of infectious disease.

<span class="mw-page-title-main">Mycosubtilin</span> Chemical compound

Mycosubtilin is a natural lipopeptide with antifungal and hemolytic activities and isolated from Bacillus species. It belongs to the iturin lipopeptide family.

A proteolipid is a protein covalently linked to lipid molecules, which can be fatty acids, isoprenoids or sterols. The process of such a linkage is known as protein lipidation, and falls into the wider category of acylation and post-translational modification. Proteolipids are abundant in brain tissue, and are also present in many other animal and plant tissues. They include ghrelin, a peptide hormone associated with feeding. Many proteolipids are composed of proteins covalenently bound to fatty acid chains, often granting them an interface for interacting with biological membranes. They are not to be confused with lipoproteins, a kind of spherical assembly made up of many molecules of lipids and some apolipoproteins.

Peptide therapeutics are peptides or polypeptides which are used to for the treatment of diseases. Naturally occurring peptides may serve as hormones, growth factors, neurotransmitters, ion channel ligands, and anti-infectives; peptide therapeutics mimic such functions. Peptide Therapeutics are seen as relatively safe and well-tolerated as peptides can be metabolized by the body.

<span class="mw-page-title-main">Halovir</span> Group of chemical compounds

Halovir refers to a multi-analogue compound belonging to a group of oligopeptides designated as lipopeptaibols which have membrane-modifying capacity and are fungal in origin. These peptides display interesting microheterogeneity; slight variation in encoding amino acids gives rise to a mixture of closely related analogues and have been shown to have antibacterial/antiviral properties.

References

  1. 1 2 Hamley IW (May 2015). "Lipopeptides: from self-assembly to bioactivity" (PDF). Chemical Communications. 51 (41): 8574–83. doi: 10.1039/c5cc01535a . PMID   25797909.
  2. Kirkham S, Castelletto V, Hamley IW, Inoue K, Rambo R, Reza M, Ruokolainen J (July 2016). "Self-Assembly of the Cyclic Lipopeptide Daptomycin: Spherical Micelle Formation Does Not Depend on the Presence of Calcium Chloride" (PDF). ChemPhysChem. 17 (14): 2118–22. doi:10.1002/cphc.201600308. PMID   27043447. S2CID   44681934.
  3. 1 2 Hamley IW, Kirkham S, Dehsorkhi A, Castelletto V, Reza M, Ruokolainen J (December 2014). "Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures". Chemical Communications. 50 (100): 15948–51. doi: 10.1039/c4cc07511k . PMID   25382300.
  4. Coutte F, Lecouturier D, Dimitrov K, Guez JS, Delvigne F, Dhulster P, Jacques P (July 2017). "Microbial lipopeptide production and purification bioprocesses, current progress and future challenges". Biotechnology Journal. 12 (7): 1600566. doi:10.1002/biot.201600566. PMID   28636078.
  5. USgranted 6911525,Hill J, et al.,"Lipopeptides as antibacterial agents",published 28 February 2002, assigned to Cubist Pharmaceuticals Inc
  6. Steenbergen JN, Alder J, Thorne GM, Tally FP (March 2005). "Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections". The Journal of Antimicrobial Chemotherapy. 55 (3): 283–8. doi: 10.1093/jac/dkh546 . PMID   15705644.
  7. 1 2 Czechowicz P, Nowicka J (2018-01-01). "Antimicrobial Activity of Lipopeptides". Advancements of Microbiology. 57 (3): 213–227. doi: 10.21307/PM-2018.57.3.213 .
  8. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (November 2010). "Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics". FEMS Microbiology Reviews. 34 (6): 1037–1062. doi: 10.1111/j.1574-6976.2010.00221.x . ISSN   1574-6976. PMID   20412310.
  9. Maget-Dana R, Peypoux F (February 1994). "Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties". Toxicology. 87 (1–3): 151–74. doi:10.1016/0300-483X(94)90159-7. PMID   8160184.
  10. Nasir MN, Besson F, Deleu M (September 2013). "Interactions des antibiotiques ituriniques avec la membrane plasmique. Apport des systèmes biomimétiques des membranes (synthèse bibliographique)". Biotechnologie, Agronomie, Société et Environnement. 17 (3): 505–16.
  11. Nasir MN, Besson F (May 2012). "Interactions of the antifungal mycosubtilin with ergosterol-containing interfacial monolayers". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1818 (5): 1302–8. doi: 10.1016/j.bbamem.2012.01.020 . PMID   22306791.
  12. Nasir MN, Besson F (September 2011). "Specific interactions of mycosubtilin with cholesterol-containing artificial membranes". Langmuir: The ACS Journal of Surfaces and Colloids. 27 (17): 10785–92. doi:10.1021/la200767e. PMID   21766869.
  13. 1 2 Kanwar SS, Meena KR (2015). "Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics". BioMed Research International. 2015: 473050. doi: 10.1155/2015/473050 . PMC   4303012 . PMID   25632392.
  14. Nasompag S, Dechsiri P, Hongsing N, Phonimdaeng P, Daduang S, Klaynongsruang S, Camesano TA, Patramanon R (October 2015). "Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1848 (10): 2351–2364. doi: 10.1016/j.bbamem.2015.07.004 . PMID   26170198.
  15. Zhang S, Corin K (2018). "Peptide surfactants in membrane protein purification and stabilization". In Koutsopoulos S (ed.). Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Elsevier Science. ISBN   978-0-08-100736-5.

Further reading