Styrene oxide

Last updated
Styrene oxide
Styrene oxide.svg
Names
Preferred IUPAC name
Phenyloxirane
Other names
Epoxystyrene; Styryl oxide; Phenylethylene oxide
Identifiers
3D model (JSmol)
108582
ChEBI
ChemSpider
ECHA InfoCard 100.002.252 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-476-7
50213
KEGG
PubChem CID
RTECS number
  • CZ9625000
UNII
UN number 2810 3082
  • InChI=1S/C8H8O/c1-2-4-7(5-3-1)8-6-9-8/h1-5,8H,6H2
    Key: AWMVMTVKBNGEAK-UHFFFAOYSA-N
  • c1ccccc1C2CO2
Properties
C8H8O
Molar mass 120.151 g·mol−1
AppearanceColorless to light yellow liquid
Density 1.052 g/mL
Melting point −37 °C (−35 °F; 236 K)
Boiling point 194 °C (381 °F; 467 K)
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H312, H319, H350
P201, P202, P264, P280, P281, P302+P352, P305+P351+P338, P308+P313, P312, P322, P337+P313, P363, P405, P501
Safety data sheet (SDS) Oxford University MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Styrene oxide is an epoxide derived from styrene. It can be prepared by epoxidation of styrene with peroxybenzoic acid, in the Prilezhaev reaction: [1]

Contents

PrilezhaevReaction.svg

Styrene oxide is slightly soluble in water. A trace amount of acid in water causes hydrolysis to racemic phenylethyleneglycol via a benzylic cation. If the amount of water is not sufficient, acid-catalyzed isomerization for phenylacetaldehyde will occur. [2]

Styrene oxide in the body is metabolized to mandelic acid, phenylglyoxylic acid, benzoic acid and hippuric acid.

Hydrogenation of styrene oxide affords phenethyl alcohol. [3]

Stereospecific reactions

Since styrene oxide has a chiral center at the benzylic carbon atom, there are (R)-styrene oxide and (S)-styrene oxide. If optically pure reagent is used, only one optically pure compound will be obtained.

Toxicology

Styrene oxide is a main metabolite of styrene in humans or animals, resulting from oxidation by cytochrome P450. It is considered possibly carcinogenic from gavaging significant amounts into mice and rats. [4] Styrene oxide is subsequently hydrolyzed in vivo to styrene glycol by epoxide hydrolase. [5]

Styrene oxide has a chiral center and thus two enantiomers. It has been reported that the two enantiomers had different toxicokinetics and toxicity[ citation needed ]. It was reported that the (R)-styrene oxide was preferentially formed in mice, especially in the lung, whereas the (S)-styrene oxide was preferentially generated in rats. In human volunteers, the cumulative excretion of the (S)-enantiomer of styrene glycol and mandelic acid were higher than the R form after exposure to styrene. In human liver microsomes, cytochrome P450-mediated styrene oxidation showed the production of more S enantiomer relative to the R enantiomer. It was also found that (S)-styrene oxide was preferentially hydrolyzed than the R enantiomer in human liver microsomes. Animal studies have shown that the (R)-enantiomer of styrene oxide was more toxic than the (S)-enantiomer in mice.

References

  1. Harold Hibbert and Pauline Burt (1941). "Styrene Oxide". Organic Syntheses ; Collected Volumes, vol. 1, p. 494.
  2. Verfahren zur Herstellung von Phenylacetaldehyde, BASF-Patent DE3546372A1 vom 2. Juli 1987
  3. Fahlbusch, Karl-Georg; Hammerschmidt, Franz-Josef; Panten, Johannes; Pickenhagen, Wilhelm; Schatkowski, Dietmar; Bauer, Kurt; Garbe, Dorothea; Surburg, Horst (2003). "Flavors and Fragrances". Ullmann's Encyclopedia of Industrial Chemistry . doi:10.1002/14356007.a11_141. ISBN   978-3-527-30673-2.
  4. EPA Styrene Oxide evaluation
  5. Kenneth C. Liebman (1975). "Metabolism and toxicity of styrene" (PDF). Environmental Health Perspectives . 11: 115–119. doi:10.2307/3428333. JSTOR   3428333. PMC   1475194 . PMID   809262.[ permanent dead link ]