Hippuric acid

Last updated
Hippuric acid
Hippuric acid.svg
Hippuric acid.jpg
Names
IUPAC name
N-Benzoylglycine
Preferred IUPAC name
Benzamidoacetic acid
Other names
  • Hippuric acid
  • Benzoyl glycocoll
  • Benzoyl amidoacetic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.098 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2,(H,10,13)(H,11,12) Yes check.svgY
    Key: QIAFMBKCNZACKA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2,(H,10,13)(H,11,12)
    Key: QIAFMBKCNZACKA-UHFFFAOYAD
  • OC(=O)CNC(=O)c1ccccc1
Properties
C9H9NO3
Molar mass 179.175 g·mol−1
Density 1.371 g/cm3
Melting point 187 to 188 °C (369 to 370 °F; 460 to 461 K)
Boiling point 240 °C (464 °F; 513 K) (decomposes)
Hazards
Safety data sheet (SDS) Material Safety Data Sheet
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hippuric acid (Gr. hippos, horse, ouron, urine) is a carboxylic acid and organic compound. It is found in urine and is formed from the combination of benzoic acid and glycine. Levels of hippuric acid rise with the consumption of phenolic compounds (such as in fruit juice, tea and wine). The phenols are first converted to benzoic acid, and then to hippuric acid and excreted in urine. [1]

Contents

Hippuric acid crystallizes in rhombic prisms which are readily soluble in hot water, melt at 187 °C, and decompose at about 240 °C. [2] High concentrations of hippuric acid may also indicate a toluene intoxication; however, scientists have called this correlation into question because there are other variables that affect levels of hippuric acid. [3] When many aromatic compounds such as benzoic acid and toluene are taken internally, they are converted to hippuric acid by reaction with the amino acid, glycine.

Synthesis

A modern synthesis of hippuric acid involves the acylation of glycine with benzoyl chloride ("Schotten–Baumann reaction"). [4]

Hippuric acid Schotten-Baumann.svg

Physiology

Biochemically, hippuric acid is produced from benzoic acid and glycine, which occurs in the liver, intestine, and kidneys. [5] In terms of mechanism, benzoic acid is converted to benzoyl CoA, an acylating agent. [6]

Hippuric acid may be formed from the essential amino acid phenylalanine through at least two pathways. Phenylalanine undergoes biotransformation to form an alpha-keto acid, phenylpyruvic acid, which can tautomerize to a reactive enol. The benzylic carbon is reactive which undergoes peroxidation followed by the competing pathways to either react with the alpha carbon subsequently form an dioxetanol intermediate followed by formation of oxalic acid and benzaldehyde, or, peroxidation can react with the carboxyl group to form an alpha-keto-beta-peroxylactone intermediate followed by formation of carbon monoxide, carbon dioxide, and benzaldehyde. Alternatively, under certain conditions, phenylpyruvic acid may undergo a redox mechanism, such as Iron(II) donating an electron, to directly release carbon dioxide, followed by carbon monoxide, for the formation of a stable toluene radical which is resolved by an antioxidant such as ascorbate. In all of the aforementioned cases, benzaldehyde undergoes biotransformation via CYP450 to benzoic acid followed by conjugation to glycine for formation of hippurate which undergoes urinary excretion. [7] Similarly, toluene reacts with CYP450 to form benzaldehyde. [8]

Hippuric acid has been reported to be a marker for Parkinson's disease. [9]

Reactions

Hippuric acid is readily hydrolysed by hot caustic alkalis to benzoic acid and glycine. Nitrous acid converts it into benzoyl glycolic acid, C6H5C(=O)OCH2CO2H.[ citation needed ] Its ethyl ester reacts with hydrazine to form hippuryl hydrazine, C6H5CONHCH2CONHNH2, which was used by Theodor Curtius for the preparation of hydrazoic acid. [2]

History

Justus von Liebig showed in 1829 that hippuric acid differed from benzoic acid and he named it, [10] and in 1834 he determined its constitution, [11] while in 1853 French chemist Victor Dessaignes (1800–1885) synthesized it by the action of benzoyl chloride on the zinc salt of glycine. [12] It was also formed by heating benzoic anhydride with glycine, [13] and by heating benzamide with monochloroacetic acid. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Benzoic acid</span> Organic compound (C6H5COOH)

Benzoic acid is a white solid organic compound with the formula C6H5COOH, whose structure consists of a benzene ring with a carboxyl substituent. The benzoyl group is often abbreviated "Bz", thus benzoic acid is also denoted as BzOH, since the benzoyl group has the formula –C6H5CO. It is the simplest aromatic carboxylic acid. The name is derived from gum benzoin, which was for a long time its only source.

Benzonitrile is the chemical compound with the formula C6H5(CN), abbreviated PhCN. This aromatic organic compound is a colorless liquid with a sweet bitter almond odour. It is mainly used as a precursor to the resin benzoguanamine.

<span class="mw-page-title-main">Benzyl alcohol</span> Aromatic alcohol

Benzyl alcohol (also known as α-cresol) is an aromatic alcohol with the formula C6H5CH2OH. The benzyl group is often abbreviated "Bn" (not to be confused with "Bz" which is used for benzoyl), thus benzyl alcohol is denoted as BnOH. Benzyl alcohol is a colorless liquid with a mild pleasant aromatic odor. It is useful as a solvent for its polarity, low toxicity, and low vapor pressure. Benzyl alcohol has moderate solubility in water (4 g/100 mL) and is miscible in alcohols and diethyl ether. The anion produced by deprotonation of the alcohol group is known as benzylate or benzyloxide.

<span class="mw-page-title-main">Styphnic acid</span> Chemical compound

Styphnic acid, or 2,4,6-trinitro-1,3-benzenediol, is a yellow astringent acid that forms hexagonal crystals. It is used in the manufacture of dyes, pigments, inks, medicines, and explosives such as lead styphnate. It is itself a low-sensitivity explosive, similar to picric acid, but explodes upon rapid heating.

<span class="mw-page-title-main">Benzoyl chloride</span> Organochlorine compound (C7H5ClO)

Benzoyl chloride, also known as benzenecarbonyl chloride, is an organochlorine compound with the formula C7H5ClO. It is a colourless, fuming liquid with an irritating odour, and consists of a benzene ring with an acyl chloride substituent. It is mainly useful for the production of peroxides but is generally useful in other areas such as in the preparation of dyes, perfumes, pharmaceuticals, and resins.

The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid.

<span class="mw-page-title-main">Benzoin condensation</span> Reaction between two aromatic aldehydes

The benzoin addition is an addition reaction involving two aldehydes. The reaction generally occurs between aromatic aldehydes or glyoxals, and results in formation of an acyloin. In the classic example, benzaldehyde is converted to benzoin.

<span class="mw-page-title-main">Glycolic acid</span> Chemical compound

Glycolic acid is a colorless, odorless and hygroscopic crystalline solid, highly soluble in water. It is used in various skin-care products. Glycolic acid is widespread in nature. A glycolate is a salt or ester of glycolic acid.

<span class="mw-page-title-main">Wilhelm Rudolph Fittig</span> German chemist (1835–1910)

Wilhelm Rudolph Fittig was a German chemist. He discovered the pinacol coupling reaction, mesitylene, diacetyl and biphenyl. Fittig studied the action of sodium on ketones and hydrocarbons. He discovered the Fittig reaction or Wurtz–Fittig reaction for the synthesis of alkylbenzenes, he proposed a diketone structure for benzoquinone and isolated phenanthrene from coal tar. He discovered and synthesized the first lactones and investigated structures of piperine, naphthalene, and fluorene.

Toluene toxicity refers to the harmful effects caused by toluene on the body.

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

<span class="mw-page-title-main">Adolph Strecker</span> German chemist (1822-1871)

Adolph Strecker was a German chemist who is remembered primarily for his work with amino acids.

<span class="mw-page-title-main">Mellitic anhydride</span> Chemical compound

Mellitic anhydride, the anhydride of mellitic acid, is an organic compound with the formula C12O9.

<span class="mw-page-title-main">Benzene</span> Hydrocarbon compound

Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar hexagonal ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon.

<span class="mw-page-title-main">Haloform reaction</span> Chemical reaction involving repeated halogenation of an acetyl group (–COCH3)

In chemistry, the haloform reaction is a chemical reaction in which a haloform is produced by the exhaustive halogenation of an acetyl group, in the presence of a base. The reaction can be used to transform acetyl groups into carboxyl groups or to produce chloroform, bromoform, or iodoform. Note that fluoroform can't be prepared in this way.

Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful.

<span class="mw-page-title-main">Conhydrine</span> Chemical compound

Conhydrine is a poisonous alkaloid found in poison hemlock in small quantities.

Radical theory is an obsolete scientific theory in chemistry describing the structure of organic compounds. The theory was pioneered by Justus von Liebig, Friedrich Wöhler and Auguste Laurent around 1830 and is not related to the modern understanding of free radicals. In this theory, organic compounds were thought to exist as combinations of radicals that could be exchanged in chemical reactions just as chemical elements could be interchanged in inorganic compounds.

<span class="mw-page-title-main">Cyameluric acid</span> Chemical compound

Cyameluric acid or 2,5,8-trihydroxy-s-heptazine is a chemical compound with formula C
6
N
7
O
3
H
3
, usually described as a heptazine molecule with the hydrogen atoms replaced by hydroxyl groups –OH; or any of its tautomers.

Victor Dessaignes was a French lawyer, physician and chemist. Dessaignes conducted experiments on organic acids and was involved in the synthesis of hippuric acid. He was also involved in characterizing and naming malonic acid, the synthesis of asparagine from ammonium dimalate, conversion between optical isomers of tartaric acid, fumaric acid in mushrooms and the synthesis of several amides.

References

  1. Wishart, David S.; Guo, An Chi; Oler, Eponine; Wang, Fel; Anjum, Afia; Peters, Harrison; Dizon, Raynard; Sayeeda, Zinat; Tian, Siyang; Lee, Brian L.; Berjanskii, Mark; Mah, Robert; Yamamoto, Mai; Jovel Castillo, Juan; Torres Calzada, Claudia; Hiebert Giesbrecht, Mickel; Lui, Vicki W.; Varshavi, Dorna; Varshavi, Dorsa; Allen, Dana; Arndt, David; Khetarpal, Nitya; Sivakumaran, Aadhavya; Harford, Karxena; Sanford, Selena; Yee, Kristen; Cao, Xuan; Budinsky, Zachary; Liigand, Jaanus; Zhang, Lun; Zheng, Jiamin; Mandal, Rupasri; Karu, Naama; Dambrova, Maija; Schiöth, Helgi B.; Gautam, Vasuk. "Showing metabocard for Hippuric acid (HMDB0000714)". Human Metabolome Database, HMDB . 5.0.
  2. 1 2 3 Wikisource-logo.svg One or more of the preceding sentences incorporates text from a publication now in the public domain :  Chisholm, Hugh, ed. (1911). "Hippuric Acid". Encyclopædia Britannica . Vol. 13 (11th ed.). Cambridge University Press. p. 523.
  3. Pero, RW (2010). "Health consequences of catabolic synthesis of hippuric acid in humans". Current Clinical Pharmacology. 5 (1): 67–73. doi:10.2174/157488410790410588. PMID   19891605.
  4. Ingersoll, A. W.; Babcock, S. H. (1932). "Hippuric acid". Organic Syntheses . 12: 40. doi:10.15227/orgsyn.012.0040 ; Collected Volumes, vol. 2, p. 328.
  5. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (March 2009). "Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites". Proc. Natl. Acad. Sci. U.S.A. 106 (10): 3698–3703. Bibcode:2009PNAS..106.3698W. doi: 10.1073/pnas.0812874106 . PMC   2656143 . PMID   19234110.
  6. Chiba, M.; Poon, K.; Hollands, J.; Pang, K. S. (1994). "Glycine Conjugation Activity of Benzoic Acid and its Acinar Localization in the Perfused Rat Liver". The Journal of Pharmacology and Experimental Therapeutics. 268 (1): 409–416. PMID   8301581.
  7. Hopper, Christopher P.; De La Cruz, Ladie Kimberly; Lyles, Kristin V.; Wareham, Lauren K.; Gilbert, Jack A.; Eichenbaum, Zehava; Magierowski, Marcin; Poole, Robert K.; Wollborn, Jakob; Wang, Binghe (2020-12-23). "Role of Carbon Monoxide in Host–Gut Microbiome Communication". Chemical Reviews. 120 (24): 13273–13311. doi:10.1021/acs.chemrev.0c00586. ISSN   0009-2665. PMID   33089988. S2CID   224824871.
  8. Hopper, Christopher P.; Zambrana, Paige N.; Goebel, Ulrich; Wollborn, Jakob (2021). "A brief history of carbon monoxide and its therapeutic origins". Nitric Oxide. 111–112: 45–63. doi:10.1016/j.niox.2021.04.001. ISSN   1089-8603. PMID   33838343. S2CID   233205099.
  9. "Parkinson's smell test explained by science". BBC News. BBC. 20 March 2019. Retrieved 11 March 2023.
  10. Liebig, Justus (1829). "Ueber die Säure, welche in dem Harn der grasfressenden vierfüssigen Thiere enthalten ist" [On the acid which is contained in the urine of grass-eating, four-footed animals]. Annalen der Physik und Chemie (in German). 17 (11): 389–399. Bibcode:1829AnP....93..389L. doi:10.1002/andp.18290931104. Liebig named hippuric acid on p. 390: "Da ich die Säure aus dem Pferdeharn vorzugsweise untersucht habe, so werde ich sie, in Ermanglung eines passenderen Namens, mit Hippursäure bezeichnen." (Since I have especially investigated the acid from horse urine, then, for want of a more suitable name, I will designate it with [the name] "hippuric acid".)
  11. Liebig, Justus (1834) "Ueber die Zusammensetzung der Hippursäure" (On the composition of hippuric acid), Annalen der Physik und Chemie, 32 : 573–574.
  12. Dessaignes V. (1853). "Ueber die Regeneration der Hippursäure" [On the regeneration of hippuric acid]. Annalen der Chemie und Pharmacie. 87 (3): 325–327. doi:10.1002/jlac.18530870311. See also: Dessaignes (1853) "Note sur la régénération de l'acide hipparique," Comptes rendus, 37 : 251–252.
  13. Curtius T. (1884). "Synthese von Hippursäure und Hippursäureäthern" [Synthesis of hippuric acid and hippuric acid esters]. Berichte der Deutschen Chemischen Gesellschaft. 17 (2): 1662–1663. doi:10.1002/cber.18840170225.