Benzoyl chloride

Last updated
Benzoyl chloride
Benzoyl chloride 200.svg
Benzoyl-chloride-from-xtal-3D-bs-17.png
Benzoyl-chloride-from-xtal-3D-sf.png
Names
Preferred IUPAC name
Benzoyl chloride
Other names
Benzoic acid chloride (1:1)
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.464 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-710-8
KEGG
PubChem CID
RTECS number
  • DM6600000
UNII
UN number 1736
  • InChI=1S/C7H5ClO/c8-7(9)6-4-2-1-3-5-6/h1-5H Yes check.svgY
    Key: PASDCCFISLVPSO-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C7H5ClO/c8-7(9)6-4-2-1-3-5-6/h1-5H
    Key: PASDCCFISLVPSO-UHFFFAOYAL
  • ClC(=O)c1ccccc1
  • c1ccc(cc1)C(=O)Cl
Properties
C7H5ClO
Molar mass 140.57 g·mol−1
Appearancecolorless liquid
Odor Benzaldehyde like but more pungent
Density 1.21 g/mL, liquid
Melting point −1 °C (30 °F; 272 K)
Boiling point 197.2 °C (387.0 °F; 470.3 K)
reacts, forms hydrogen chloride on contact with water
-75.8·10−6 cm3/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Maybe harmful by ingestion and skin absorption; possible carcinogen [1]
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H314, H317, H332
P260, P261, P264, P270, P271, P272, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P333+P313, P363, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
2
0
W
Flash point 72 °C (162 °F; 345 K)
Safety data sheet (SDS) Fisher Scientific MSDS
Related compounds
Related compounds
benzoic acid, benzoic anhydride, benzaldehyde
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Benzoyl chloride, also known as benzenecarbonyl chloride, is an organochlorine compound with the formula C7H5ClO. It is a colourless, fuming liquid with an irritating odour, and consists of a benzene ring (C6H6) with an acyl chloride (−C(=O)Cl) substituent. It is mainly useful for the production of peroxides but is generally useful in other areas such as in the preparation of dyes, perfumes, pharmaceuticals, and resins.

Contents

Preparation

Benzoyl chloride is produced from benzotrichloride using either water or benzoic acid: [2]

C6H5CCl3 + H2O → C6H5COCl + 2 HCl
C6H5CCl3 + C6H5CO2H → 2 C6H5COCl + HCl

As with other acyl chlorides, it can be generated from the parent acid and standard chlorinating agents such as phosphorus pentachloride, thionyl chloride, and oxalyl chloride. It was first prepared by treatment of benzaldehyde with chlorine. [3]

An early method for production of benzoyl chloride involved chlorination of benzyl alcohol. [4]

Reactions

It reacts with water to produce hydrochloric acid and benzoic acid:

C6H5COCl + H2O → C6H5COOH + HCl

Benzoyl chloride is a typical acyl chloride. It reacts with alcohols to give the corresponding esters. Similarly, it reacts with amines to give the amide. [5] [6]

It undergoes the Friedel-Crafts acylation with aromatic compounds to give the corresponding benzophenones and related derivatives. [7] With carbanions, it serves again as a source of the benzoyl cation synthon, C6H5CO+. [8]

Benzoyl peroxide, a common reagent in polymer chemistry, is produced industrially by treating benzoyl chloride with hydrogen peroxide and sodium hydroxide: [9]

2 C6H5COCl + H2O2 + 2 NaOH → (C6H5CO)2O2 + 2 NaCl + 2 H2O

Related Research Articles

<span class="mw-page-title-main">Amide</span> Organic compounds of the form RC(=O)NR′R″

In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, as in asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Oxalyl chloride</span> Chemical compound

Oxalyl chloride is an organic chemical compound with the formula Cl−C(=O)−C(=O)−Cl. This colorless, sharp-smelling liquid, the diacyl chloride of oxalic acid, is a useful reagent in organic synthesis.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Peroxy acid</span> Organic acid having a peroxide bond

A peroxy acid is an acid which contains an acidic –OOH group. The two main classes are those derived from conventional mineral acids, especially sulfuric acid, and the peroxy derivatives of organic carboxylic acids. They are generally strong oxidizers.

<span class="mw-page-title-main">Acryloyl chloride</span> Chemical compound

Acryloyl chloride, also known as 2-propenoyl chloride, acrylyl chloride, or acrylic acid chloride, is the organic compound with the formula CH2=CHCO(Cl). It is a colorless liquid, although aged samples appear yellow. It belongs to the acid chlorides group of compounds.

Geminal halide hydrolysis is an organic reaction. The reactants are geminal dihalides with a water molecule or a hydroxide ion. The reaction yields ketones from secondary halides or aldehydes from primary halides.

<span class="mw-page-title-main">Trimethylsilyl chloride</span> Organosilicon compound with the formula (CH3)3SiCl

Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound, with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.

In inorganic chemistry, sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X, where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

<span class="mw-page-title-main">Nitrosyl chloride</span> Chemical compound

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.

Stephen aldehyde synthesis, a named reaction in chemistry, was invented by Henry Stephen (OBE/MBE). This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R-CN) using tin(II) chloride (SnCl2), hydrochloric acid (HCl) and quenching the resulting iminium salt ([R-CH=NH2]+Cl) with water (H2O). During the synthesis, ammonium chloride is also produced.

<span class="mw-page-title-main">Thiophosphoryl chloride</span> Chemical compound

Thiophosphoryl chloride is an inorganic compound with the chemical formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

Silylation is the introduction of one or more (usually) substituted silyl groups (R3Si) to a molecule. Silylations are core methods for production of organosilicon chemistry. Silanization involves similar methods but usually refers to attachment of silyl groups to solids.

<span class="mw-page-title-main">Sulfenyl chloride</span> Chemical group (R–S–Cl)

In organosulfur chemistry, a sulfenyl chloride is a functional group with the connectivity R−S−Cl, where R is alkyl or aryl. Sulfenyl chlorides are reactive compounds that behave as sources of RS+. They are used in the formation of RS−N and RS−O bonds. According to IUPAC nomenclature they are named as alkyl thiohypochlorites, i.e. esters of thiohypochlorous acid.

<span class="mw-page-title-main">Butyryl chloride</span> Chemical compound

Butyryl chloride is an organic compound with the chemical formula CH3CH2CH2C(O)Cl. It is a colorless liquid with a unpleasant odor. Butyryl chloride is soluble in organic solvents, but it reacts readily with water and alcohols. It is usually produced by chlorination of butyric acid.

In organic chemistry, thiocarboxylic acids or carbothioic acids are organosulfur compounds related to carboxylic acids by replacement of one of the oxygen atoms with a sulfur atom. Two tautomers are possible: a thione form and a thiol form. These are sometimes also referred to as "carbothioic O-acid" and "carbothioic S-acid" respectively. Of these the thiol form is most common.

<span class="mw-page-title-main">Imidoyl chloride</span>

Imidoyl chlorides are organic compounds that contain the functional group RC(NR')Cl. A double bond exist between the R'N and the carbon centre. These compounds are analogues of acyl chloride. Imidoyl chlorides tend to be highly reactive and are more commonly found as intermediates in a wide variety of synthetic procedures. Such procedures include Gattermann aldehyde synthesis, Houben-Hoesch ketone synthesis, and the Beckmann rearrangement. Their chemistry is related to that of enamines and their tautomers when the α hydrogen is next to the C=N bond. Many chlorinated N-heterocycles are formally imidoyl chlorides, e.g. 2-chloropyridine, 2, 4, and 6-chloropyrimidines.

<span class="mw-page-title-main">Pentanoyl chloride</span> Chemical compound

Pentanoyl chloride is an acyl chloride derived from pentanoic acid. It is a colorless liquid that is used to attach the valeroyl group. It is usually produced by chlorination of valeric acid.

References

  1. Benzoyl chloride: toxicity and precautions
  2. Maki, Takao; Takeda, Kazuo (2000). "Benzoic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_555. ISBN   978-3527306732.
  3. Friedrich Wöhler, Justus von Liebig (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Pharmacie . 3 (3): 262–266. doi:10.1002/jlac.18320030302. hdl: 2027/hvd.hxdg3f .
  4. US1851832, 29 March 1932
  5. Marvel, C. S.; Lazier, W. A. (1929). "Benzoyl Piperidine". Organic Syntheses. 9: 16. doi:10.15227/orgsyn.009.0016.
  6. Prasenjit Saha, Md Ashif Ali, and Tharmalingam Punniyamurthy "Ligand-free Copper(ii) Oxide Nanoparticles Catalyzed Synthesis Of Substituted Benzoxazoles" Org. Synth. 2011, volume 88, pp. 398. doi : 10.15227/orgsyn.088.0398. (an illustrative reaction of an amine with benzoyl chloride).
  7. Minnis, Wesley (1932). "Phenyl Thienyl Ketone". Organic Syntheses. 12: 62. doi:10.15227/orgsyn.012.0062.
  8. Fujita, M.; Hiyama, T. (1990). "Directed Reduction of a beta-keto Amide: Erythro-1-(3-hydroxy-2-methyl-3-phenylpropanoyl)piperidine". Organic Syntheses. 69: 44. doi:10.15227/orgsyn.069.0044.
  9. El-Samragy, Yehia (2004). "Chemical and Technical Assessment". Benzoyl Peroxide (PDF). 61st JECFA (Technical report). Joint FAO/WHO Expert Committee on Food Additives. p. 1. Retrieved 31 October 2013.