Names | |
---|---|
Preferred IUPAC name 7-(2-Octylcycloprop-1-en-1-yl)heptanoic acid | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
KEGG | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C18H32O2 | |
Molar mass | 280.452 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Malvalic acid is a cyclopropene fatty acid found in baobab seed oil [1] and cottonseed oil. This unusual molecule is thought to be one of the causes of abnormalities that develop in animals that ingest cottonseed oil. [2] Refining processes, such as hydrogenation, can remove or destroy malvalic acid.
The biosynthesis of malvalic acid starts with oleic acid, an 18-carbon monounsaturated fatty acid, leading to sterculic acid. An α-oxidation reaction removes one carbon from the chain to form the 17-carbon-chain structure of malvalic acid. [3]
Wilson et al. [4] demonstrated the co-occurrence of malvalic acid and the corresponding cyclopropane acids in several types of seeds. He suggested that methylene addition to oleic acid gave rise to dihydrosterculic acid, which was desaturated to sterculic acid, and that 8-heptadecenoic acid was similarly the precursor of dihydromalvalic acid and malvalic acid. Smith and Bu'Lock [5] showed that in Hibiscus seedlings the chains of sterculic and malvalic acids, but not the ring methylene carbon, were derived from acetate. They showed that the labeling pattern in malvalic acid was the same as that in sterculic acid minus the carboxyl carbon. They explained the shortening by α oxidation occurring during the biogenesis of malvalic acid. Hooper and Law [6] demonstrated that the ring methylene carbon of both cyclopropane and cyclopropene acids was derived from the methyl group of methionine in Hibiscus, and suggested from the distribution of label that the pathway was oleic → dihydrosterculic → sterculic acid. [7]
A triglyceride is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates as well as vegetable fat. They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver and are a major component of human skin oils.
α-Linolenic acid, also known as alpha-linolenic acid (ALA), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.
Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production.
Cottonseed oil is cooking oil from the seeds of cotton plants of various species, mainly Gossypium hirsutum and Gossypium herbaceum, that are grown for cotton fiber, animal feed, and oil.
Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish due to the presence of impurities. In chemical terms, oleic acid is classified as a monounsaturated omega-9 fatty acid, abbreviated with a lipid number of 18:1 cis-9, and a main product of Δ9-desaturase. It has the formula CH3−(CH2)7−CH=CH−(CH2)7−COOH. The name derives from the Latin word oleum, which means oil. It is the most common fatty acid in nature. The salts and esters of oleic acid are called oleates. It is a common component of oils, and thus occurs in many types of food, as well as in soap.
Omega−6 fatty acids are a family of polyunsaturated fatty acids (PUFA) that share a final carbon-carbon double bond in the n−6 position, that is, the sixth bond, counting from the methyl end.
Cyclopropene is an organic compound with the formula C3H4. It is the simplest cycloalkene. Because the ring is highly strained, cyclopropene is difficult to prepare and highly reactive. This colorless gas has been the subject for many fundamental studies of bonding and reactivity. It does not occur naturally, but derivatives are known in some fatty acids. Derivatives of cyclopropene are used commercially to control ripening of some fruit.
In biochemistry and nutrition, a polyunsaturated fat is a fat that contains a polyunsaturated fatty acid, which is a subclass of fatty acid characterized by a backbone with two or more carbon–carbon double bonds. Some polyunsaturated fatty acids are essentials. Polyunsaturated fatty acids are precursors to and are derived from polyunsaturated fats, which include drying oils.
Fatty acid desaturases are a family of enzymes that convert saturated fatty acids into unsaturated fatty acids and polyunsaturated fatty acids. For the common fatty acids of the C18 variety, desaturases convert stearic acid into oleic acid. Other desaturases convert oleic acid into linoleic acid, which is the precursor to alpha-linolenic acid, gamma-linolenic acid, and eicosatrienoic acid.
Hypoglycin A is a naturally occurring amino acid derivative found in the unripened fruit of the Ackee tree and in the seeds of the box elder tree. It is toxic if ingested, and is the causative agent of Jamaican vomiting sickness. A 2017 Lancet report established a link between the consumption of unripened lychees resulting in hypoglycaemia and death from acute toxic encephalopathy.
Cyclopropane fatty acids (CPA) are a subgroup of fatty acids that contain a cyclopropane group. Although they are usually rare, the seed oil from lychee contains nearly 40% CPAs in the form of triglycerides.
In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine to form triglycerides, the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surrounds the organelles within the cells. In addition to cytosolic fatty acid synthesis, there is also mitochondrial fatty acid synthesis (mtFASII), in which malonyl-CoA is formed from malonic acid with the help of malonyl-CoA synthetase (ACSF3), which then becomes the final product octanoyl-ACP (C8) via further intermediate steps.
Stearoyl-CoA desaturase is an endoplasmic reticulum enzyme that catalyzes the rate-limiting step in the formation of monounsaturated fatty acids (MUFAs), specifically oleate and palmitoleate from stearoyl-CoA and palmitoyl-CoA. Oleate and palmitoleate are major components of membrane phospholipids, cholesterol esters and alkyl-diacylglycerol. In humans, the enzyme is present in two isoforms, encoded respectively by the SCD1 and SCD5 genes.
Long-chain alcohol oxidase is one of two enzyme classes that oxidize long-chain or fatty alcohols to aldehydes. It has been found in certain Candida yeast, where it participates in omega oxidation of fatty acids to produce acyl-CoA for energy or industrial use, as well as in other fungi, plants, and bacteria.
α-Parinaric acid is a conjugated polyunsaturated fatty acid. Discovered by Tsujimoto and Koyanagi in 1933, it contains 18 carbon atoms and 4 conjugated double bonds. The repeating single bond-double bond structure of α-parinaric acid distinguishes it structurally and chemically from the usual "methylene-interrupted" arrangement of polyunsaturated fatty acids that have double-bonds and single bonds separated by a methylene unit (−CH2−). Because of the fluorescent properties conferred by the alternating double bonds, α-parinaric acid is commonly used as a molecular probe in the study of biomembranes.
Nervonic acid is a fatty acid. It is a monounsaturated analog of lignoceric acid (24:0). It is also known as selacholeic acid and cis-15-tetracosenoic acid. Its name derives from the Latin word nervus, meaning nerve or sinew.
Ambadi seed oil is extracted from seeds of the ambadi plant. It is an annual or perennial plant in the family Malvaceae and related to the roselle. It is believed to be native to Africa or Tropical Asia.
Methylene cyclopropyl acetic acid (MCPA) is found in lychee seeds and also a toxic metabolite in mammalian digestion after eating hypoglycin, present in the unripe ackee fruit, grown in Jamaica and in Africa. By blocking coenzyme A and carnitine, MPCA causes a decrease in β-oxidation of fatty acids, and hence gluconeogenesis.
Sterculic acid is a cyclopropene fatty acid. It is found in various plants of the genus Sterculia, including being the main component of Sterculia foetida seed oil.
Lactobacillic aci, scientifically 10-(2-hexylcyclopropyl) decanoic acid, is a naturally occurring chemical compound from the group of fatty acids. Its salts are called lactobacillates. A special feature is the cyclopropane ring in the carbon chain. Lactobacillic acid, with 19 carbon atoms, is a fatty acid with an odd number of carbon atoms.