Fleming–Tamao oxidation

Last updated

Contents

Fleming-Tamao oxidation
Named after Ian Fleming
Kohei Tamao
Reaction type Organic redox reaction
Identifiers
Organic Chemistry Portal fleming-tamao-oxidation
RSC ontology ID RXNO:0000210

The Fleming–Tamao oxidation, or Tamao–Kumada–Fleming oxidation, converts a carbonsilicon bond to a carbonoxygen bond with a peroxy acid or hydrogen peroxide. Fleming–Tamao oxidation refers to two slightly different conditions developed concurrently in the early 1980s by the Kohei Tamao and Ian Fleming research groups. [1] [2] [3]

Summary of the Fleming-Tamao oxidation Fleming-Tamao oxidation Chem1996.svg
Summary of the Fleming–Tamao oxidation

The reaction is stereospecific with retention of configuration at the carbon–silicon bond. [2] [3] This allows the silicon group to be used as a functional equivalent of the hydroxyl group. Another key feature of the silicon group is that it is relatively stable due to the presence of the silicon atom, and therefore can tolerate various reaction conditions that the hydroxyl group can not tolerate. Due to the stability of the silicon group, organosilicon compounds are useful in the total synthesis of complex natural products and pharmaceutical drugs. For instance, the Fleming–Tamao oxidation has been used to accomplish the synthesis of subunits of tautomycin, [4] an inhibitor that is used as a lead cancer compound and as an immunosuppressant.

History

In 1983, Tamao and co-workers were the first to report the successful transformation of an allyl alkoxy silyl to an allyl alcohol without an allylic shift. [5] In their report, the chemists observed that the hydroxyl group was introduced exclusively onto the carbon atom to which the silicon atom was attached. In the same year, Tamao and group published another paper that showed that the carbon–silicon bond in alkoxy organosilicon compounds can be cleaved using H2O2 or m-CPBA under acidic, basic (chemistry), or neutral conditions, to afford the corresponding alcohols. [6] A year later, Ian Fleming and group reported that the dimethylphenylsilyl (Me2PhSi) group can be converted to an hydroxyl group in a two-pot sequence. [2] Later, in 1987, Fleming reported a one-pot variant to the two-pot sequence in which either bromine or mercuric ion acts as the electrophile. These early findings paved the way for the development of a large number of silicon-based reagents and the use of various silyl groups as functional equivalents of the hydroxyl group.

Mechanisms

Tamao–Kumada oxidation

Although the mechanism below is for the basic condition, the proposed mechanism [1] [7] for the Tamao oxidation is similar under each condition. The mechanism below contains at least one fluorine atom as the substituent, which is the prototype structure that Tamao studied. Fluoride, provided by a fluoride source or a donor solvent, attacks the fluorosilane in a fast and reversible step to give a pentacoordinated species. This species is more electrophilic than the fluorosilane, thereby promoting attack by the nucleophilic oxidant to yield the negatively charged hexacoordinated transition state. This step was determined to be the rate determining step based on kinetic studies done by Tamao. [8] Further studies by Tamao on the steric and electronic effects of different groups attached to the silicon led him to suggest that attack by the oxidant trans to the electronegative fluoride group is energetically favored. The group cis to the peroxide oxygen in the transition state structure then migrates preferentially, thus explaining the retention of configuration at the carbon center. Finally, the new silicon–oxygen bond of the hexaco-ordinated species is hydrolyzed by water in the reaction medium. Subsequent workup produced the expected alcohol.

Mechanism of Tamao oxidation Tamao oxidation mechanism.svg
Mechanism of Tamao oxidation

Fleming oxidation

Two-pot sequence

Unlike the Tamao oxidation whose starting material is an activated heteroatom-substituted silyl group, the Fleming oxidation utilizes a more robust silyl group which has only carbon atoms attached to the silicon atom. The prototype silyl structure that Fleming used was dimethylphenylsilyl. This aryl silane is then converted to the more reactive halo- or heterosilane to initiate the oxidation. [2] [3] The mechanism of the two-pot sequence [1] [7] differs from the Tamao oxidation since the reagents are different. First, an electrophile attacks the phenyl ring in the ipso position to give a beta-carbocation that is stabilized by the silicon group. A heteroatom then attacks the silicon group, which allows the phenyl ring to leave, in a key step referred to as protodesilylation of the arylsilane. The alkyl group undergoes 1,2 migration from the silicon to the oxygen atom. Aqueous acid mediated hydrolysis and subsequent workup yield the desired alcohol. It is difficult to prevent small resulting silyl-alcohols from dehydrating to form siloxanes.

Two-pot oxidation mechanism Fleming 2 pot.png
Two-pot oxidation mechanism

One-pot sequence

The main difference between the one-pot and two-pot sequences is that the former has bromine or mercuric ion as the electrophile that is attacked by the benzene ring. The bromine electrophile is generated by diatomic bromine or another source such as potassium bromide, which can be oxidized to generate bromine in situ by the peracetic acid. The source of the mercuric ion is mercuric acetate, and this reagent is mixed with peracetic acid in AcOH to provide the oxidizing conditions. The mechanism for the one-pot and two-pot sequences is the same since the bromine or mercuric ion are attacked by the phenyl ring instead of the hydrogen ion. [3] [9]

Scope

The Tamao–Kumada oxidation, or the Tamao oxidation, uses a silyl group with a hydrogen atom, a heteroatom or an electron-donating group attached to the silicon atom to make it more reactive. Tamao used either fluorine or chlorine atom, or an alkoxy (OR) or amine group (NR2) as the substituent on the substrates. [5] In addition to varying the percent composition of oxidants and combining different solvents, Tamao also used additives such as acetic anhydride (Ac2O), potassium hydrogen fluoride (KHF2), and potassium hydrogen carbonate (KHCO3) or sodium hydrogen carbonate (NaHCO3) to make the reaction conditions slightly acidic, neutral, and alkaline, respectively. The different conditions were used to observe the effect that pH environment had on the oxidative cleavage of the various alkoxy groups. Below is an example of each reaction condition.

Variations

Recently, the Fleming–Tamao oxidation has been used to generate phenol and substituted phenols in very good yield. [10]

The generation of phenol using Fleming-Tamao oxidation Phenol generation using FT oxidation.svg
The generation of phenol using Fleming–Tamao oxidation

The Tamao oxidation was used to synthesize acid, aldehyde, and ketone under varying reaction conditions. [11] Whereas the carbon-silicon bond of a substituted alkylsilyl is cleaved to a carbon-oxygen single bond, a substituted alkenylsilyl group is transformed to a carbonyl under the same Tamao oxidation conditions employed for alkylsilane. [11]

aldehyde, acid and ketone syntheses with the use of the Tamao oxidation Ketone, Aldehyde, Acid.svg
aldehyde, acid and ketone syntheses with the use of the Tamao oxidation

Advantages of a C–Si linkage

The silyl group is a non-polar and relatively unreactive species and is therefore tolerant of many reagents and reaction conditions that might be incompatible with free alcohols. Consequently, the silyl group also eliminates the need for introduction of hydroxyl protecting groups. In short, by deferring introduction of an alcohol to a late synthetic stage, opting instead to carry through a silane, a number of potential problems experienced in total syntheses can be mitigated or avoided entirely. [1]

Steric effects

One of the major pitfalls of either the Fleming or Tamao oxidations is steric hindrance. [2] Increasing the steric bulk at the silicon center generally slows down reaction, potentially even suppressing reaction entirely when certain substituents are employed. In general, less bulky groups such as methyl or ethyl favor oxidation, while bulkier groups such as tert-butyl slow down or stop oxidation. There are special cases in which this pattern in not followed. For example, alkoxy groups tend to enhance oxidation, [6] while oxidation does not proceed under normal conditions when three alkyl substituents are attached to the silicon atom. The trend below illustrates the order in which oxidation proceeds.

The effect of substituents attached to the silicon atom on the Fleming-Tamao oxidation Effects of substituents.svg
The effect of substituents attached to the silicon atom on the Fleming–Tamao oxidation

Applications

Natural product synthesis

The natural product, (+)− pramanicin, became an interesting target for synthesis because it was observed to be active against a fungal pathogen that resulted in meningitis in AIDS patients. Therefore, its synthesis [12] which utilized the Fleming–Tamao oxidation as a crucial step has been relevant to chemists as well as to patients afflicted by AIDS. The antifungal agent has also been shown previously to induce cell death and increase calcium levels in vascular endothelial cells. Furthermore, (+)– pramanicin has a wide range of potential applications against human diseases.

The total synthesis of pramanicin usintg Fleming-Tamao oxidation Synthesis of Natural Product.svg
The total synthesis of pramanicin usintg Fleming–Tamao oxidation

Polyol synthesis

Polyols and diols are especially useful to the food industry and polymer chemistry. Their importance is underscored by the fact that they can be used as sugar replacers for diabetics or those who choose to have sugar-free or low-calorie diets. The Fleming-Tamao has been applied in the synthesis of stereoselective diols. Woerpel [13] used the reaction to synthesize anti-1,3 diols from functionalized silyl anion.

Alternatively, Hara, K.; Moralee, and Ojima [14] achieved syn-1,3 diols using Tamao oxidation.

See also

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom bonded to two organyl groups. They have the general formula R−O−R′, where R and R′ represent the organyl groups. Ethers can again be classified into two varieties: if the organyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

In chemistry, a nucleophilic substitution (SN) is a class of chemical reactions in which an electron-rich chemical species replaces a functional group within another electron-deficient molecule. The molecule that contains the electrophile and the leaving functional group is called the substrate.

Hydroboration–oxidation reaction is a two-step hydration reaction that converts an alkene into an alcohol. The process results in the syn addition of a hydrogen and a hydroxyl group where the double bond had been. Hydroboration–oxidation is an anti-Markovnikov reaction, with the hydroxyl group attaching to the less-substituted carbon. The reaction thus provides a more stereospecific and complementary regiochemical alternative to other hydration reactions such as acid-catalyzed addition and the oxymercuration–reduction process. The reaction was first reported by Herbert C. Brown in the late 1950s and it was recognized in his receiving the Nobel Prize in Chemistry in 1979.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Trimethylsilyl group</span> Functional group

A trimethylsilyl group (abbreviated TMS) is a functional group in organic chemistry. This group consists of three methyl groups bonded to a silicon atom [−Si(CH3)3], which is in turn bonded to the rest of a molecule. This structural group is characterized by chemical inertness and a large molecular volume, which makes it useful in a number of applications.

The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds. This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity. The Hiyama coupling has been applied to the synthesis of various natural products.

<span class="mw-page-title-main">2-Iodoxybenzoic acid</span> Chemical compound

2-Iodoxybenzoic acid (IBX) is an organic compound used in organic synthesis as an oxidizing agent. This periodinane is especially suited to oxidize alcohols to aldehydes. IBX is most often prepared from 2-iodobenzoic acid and a strong oxidant such as potassium bromate and sulfuric acid, or more commonly, oxone. One of the main drawbacks of IBX is its limited solubility; IBX is insoluble in many common organic solvents. IBX is an impact- and heat-sensitive explosive (>200°C). Commercial IBX is stabilized by carboxylic acids such as benzoic acid and isophthalic acid.

Silyl ethers are a group of chemical compounds which contain a silicon atom covalently bonded to an alkoxy group. The general structure is R1R2R3Si−O−R4 where R4 is an alkyl group or an aryl group. Silyl ethers are usually used as protecting groups for alcohols in organic synthesis. Since R1R2R3 can be combinations of differing groups which can be varied in order to provide a number of silyl ethers, this group of chemical compounds provides a wide spectrum of selectivity for protecting group chemistry. Common silyl ethers are: trimethylsilyl (TMS), tert-butyldiphenylsilyl (TBDPS), tert-butyldimethylsilyl (TBS/TBDMS) and triisopropylsilyl (TIPS). They are particularly useful because they can be installed and removed very selectively under mild conditions.

Cyanogen bromide is the inorganic compound with the formula (CN)Br or BrCN. It is a colorless solid that is widely used to modify biopolymers, fragment proteins and peptides, and synthesize other compounds. The compound is classified as a pseudohalogen.

In organic chemistry the Brook rearrangement refers to any [1,n] carbon to oxygen silyl migration. The rearrangement was first observed in the late 1950s by Canadian chemist Adrian Gibbs Brook (1924–2013), after which the reaction is named. These migrations can be promoted in a number of different ways, including thermally, photolytically or under basic/acidic conditions. In the forward direction, these silyl migrations produce silyl ethers as products which is driven by the stability of the oxygen-silicon bond.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

In organosilicon chemistry, silyl enol ethers are a class of organic compounds that share the common functional group R3Si−O−CR=CR2, composed of an enolate bonded to a silane through its oxygen end and an ethene group as its carbon end. They are important intermediates in organic synthesis.

<span class="mw-page-title-main">Wender Taxol total synthesis</span>

Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.

<span class="mw-page-title-main">Phenylboronic acid</span> Chemical compound

Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH)2 where Ph is the phenyl group C6H5- and B(OH)2 is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis. Boronic acids are mild Lewis acids which are generally stable and easy to handle, making them important to organic synthesis.

<span class="mw-page-title-main">Mukaiyama Taxol total synthesis</span>

The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.

Electrophilic substitution of unsaturated silanes involves attack of an electrophile on an allyl- or vinylsilane. An allyl or vinyl group is incorporated at the electrophilic center after loss of the silyl group.

Electrophilic aromatic substitution (SEAr) is an organic reaction in which an atom that is attached to an aromatic system is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, alkylation Friedel–Crafts reaction and acylation Friedel–Crafts reaction.

The Davis–Beirut reaction is N,N-bond forming heterocyclization that creates numerous types of 2H-indazoles and indazolones in both acidic and basic conditions The Davis–Beirut reaction is named after Mark Kurth and Makhluf Haddadin's respective universities; University of California, Davis and American University of Beirut, and is appealing because it uses inexpensive starting materials and does not require toxic metals.

References

  1. 1 2 3 4 Jones, G.R.; Landais, Y. (1996), "The Oxidation of the Carbon-Silicon Bond", Tetrahedron , 52 (22): 7599–7662, doi:10.1016/s0040-4020(96)00038-5
  2. 1 2 3 4 5 Fleming, I.; Henning, R.; Plaut, H.E. (1984), "The Phenyldimethylsilyl Group as a Masked Form of the Hydroxy Group", J. Chem. Soc., Chem. Commun. (1): 29–31, doi:10.1039/C39840000029
  3. 1 2 3 4 Fleming, I.; Henning, R.; Parker, D.C.; Plaut, H.E.; Sanderson, P.E.J. (1995), "The Phenyldimethylsilyl Group as a Masked Hydroxy Group", J. Chem. Soc., Perkin Trans. 1 (4): 317–37, doi:10.1039/P19950000317
  4. James, M. A.; Mathew,, Y. (2001), "Synthesis of a C1-C21 Subunit of the Protein Phosphatase Inhibitor Tautomycin: A Formal Total Synthesis", J. Org. Chem. , 66 (4): 1373–1379, doi:10.1021/jo0056951, PMID   11312969 {{citation}}: CS1 maint: multiple names: authors list (link)
  5. 1 2 Tamao, K.; Ishida, N.; Kumada, M.; Henning, R.; Plaut, H.E. (1983), "Diisopropoxymethylsilyl)methyl Grignard reagent: a new, practically useful nucleophilic hydroxymethylating agent", J. Org. Chem. , 48 (12): 2120–2122, doi:10.1021/jo00160a046
  6. 1 2 Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. (1983), "Silafunctional compounds in organic synthesis. Part 20. Hydrogen peroxide oxidation of the silicon-carbon bond in organoalkoxysilanes", Organometallics , 2 (11): 1694–1696, doi:10.1021/om50005a041
  7. 1 2 "Name Reactions: A Collection of Detailed Reaction Mechanisms," 2nd ed. by Li, J. J. (2003), 404, CODEN: ADSDEO; ISBN   3-540-40203-9
  8. "Frontiers of Organosilicon Chemistry, by Tamao, K.; Hayashi, T.; Ito, Y. (1991), 197–207.
  9. Fleming, I.; Sanderson, P.E.J. (1987), "A one-pot conversion of the phenyldimethylsilyl group into a hydroxyl group", Tetrahedron Lett. , 52 (36): 4229–4232, doi:10.1016/s0040-4039(00)95587-4
  10. 1 2 Sunderhaus, J D.; Lam, H.; Dudley, G B. (2003), "Oxidation of Carbon−Silicon Bonds: The Dramatic Advantage of Strained Siletanes", Org. Lett. , 5 (24): 2120–2122, doi:10.1021/ol035695y, PMID   14627386
  11. 1 2 3 Tamao, K.; Kumada, M. (1984), "Silafunctional Compounds in organic Synthesis. 21.1 Hydrogen peroxide Oxidation of alkenyl (alkoxy)silanes", Tetrahedron Lett. , 25 (3): 321–324, doi:10.1016/S0040-4039(00)99873-3
  12. 1 2 Barrett, Anthony G. M.; Head, John; Smith, Marie L.; Stock, Nicholas S.; White, A. J. P.; Williams, D. J. (1999). "Fleming−Tamao Oxidation and Masked Hydroxyl Functionality: Total Synthesis of (+)-Pramanicin and Structural Elucidation of the Antifungal Natural Product (−)-Pramanicin". The Journal of Organic Chemistry. 64 (16): 6005–6018. doi:10.1021/jo9905672. ISSN   0022-3263.
  13. Woerpel, K.A.; Tenenbaum, J.M. (2003), "Use of an Aminosilyllithium for the Diastereoselective Synthesis of Diphenyl Oxasilacyclopentane Acetals and Polyols", Org. Lett. , 5 (23): 4325–4327, doi:10.1021/ol035577a, PMID   14601991
  14. "Abstracts of Papers, 222nd ACS Meeting, Chicago" by Hara K.; Moralee, A.C.; Ojima, I. (2001), ORGN-089.