Palladium–NHC complex

Last updated
[(NHC)Pd(allyl)Cl] complex. Nhc pd allyl cl.svg
[(NHC)Pd(allyl)Cl] complex.

In organometallic chemistry, palladium-NHC complexes are a family of organopalladium compounds in which palladium forms a coordination complex with N-heterocyclic carbenes (NHCs). They have been investigated for applications in homogeneous catalysis, [4] particularly cross-coupling reactions. [1] [4] [5]

Contents

Synthesis

The synthesis of Pd-NHC complexes follows the methods used for the synthesis of transition metal NHC complexes. The synthesis of Pd-NHC complexes can also be achieved through substitution of a labile ligand L in a Pd-L complex. Labile ligands typically include cyclooctadiene, dibenzylideneacetone, bridging halides, or phosphines. This process can be used in conjunction with the in situ generation of free carbenes. Pd-NHC complexes can also be synthesized through transmetalation with silver-NHC complexes. The transmetallated NHCs can either be isolated for subsequent reaction with palladium in a two-step method, or generated in the presence of palladium in a one-pot reaction. However, generation of Pd-NHC complexes by Ag transmetallation is cost-prohibitive and hampered by Ag complexes’ light sensitivity. [4]

Pd-NHC complexes in catalytic cross-coupling

The utility of palladium-catalyzed cross-coupling reactions is enhanced by the use of N-heterocyclic carbene ligands. Indeed, Pd-NHC complexes have been proven effective in Suzuki-Miyaura, Negishi, Sonogashira, Kumada-Tamao-Corriu, Hiyama, and Stille cross-coupling. Compared to the corresponding Pd-phosphine catalysts, Pd-NHC catalysts can be faster, exhibit broader substrate scope, all with higher turnover numbers. [4]

Suzuki-Miyaura cross-coupling

In Suzuki-Miyaura cross-couplings, the traditional coupling partners are organobromides and organoboron compounds. While Suzuki-Miyaura cross-couplings typically employ organobromides as coupling partners, organochlorides are more desirable electrophiles for cross-coupling due to their lower cost. The sluggish reactivity of the C-Cl bond is often a problem. With the advent of Pd-NHC complexes, organochlorides have emerged as viable partners in Suzuki-Miyaura cross coupling. [4] [6]

Negishi coupling

The use of NHC-Pd-PEPPSI complexes in Negishi cross-coupling has resulted in high turnover numbers and turnover frequencies. [7] Additionally, NHC-Pd complexes can be used to couple sp3 centers to sp3 centers in higher yield than their non-NHC Pd analogs. [8] However, studies of Pd-NHC complexes and their utility in Negishi coupling are currently lacking despite these promising results. [4]

Sonogashira coupling

Pd-NHC complexes used in Sonogashira cross-coupling effect temperature stability in the complex. [9] As in other Pd-NHC mediated cross-coupling reactions, the use of Pd-NHC complexes also allow higher turnover numbers than their NHC-free counterparts. [10] NHC-palladacycles permit copper-free Sonogashira reactions to be carried out. [11] [12]

Heck-Mizoroki coupling

The use of Pd-NHC complexes in Heck-Mizoroki cross-coupling permits the use of cheaper, ample supplies of aryl chloride substrates. [4] Additionally, the activity and stability of the catalyst in Heck-Mizoroki coupling can be enhanced by adjusting the 1,3 substituents on the imidazole ring. [13]

Related Research Articles

The Heck reaction is the chemical reaction of an unsaturated halide with an alkene in the presence of a base and a palladium catalyst to form a substituted alkene. It is named after Tsutomu Mizoroki and Richard F. Heck. Heck was awarded the 2010 Nobel Prize in Chemistry, which he shared with Ei-ichi Negishi and Akira Suzuki, for the discovery and development of this reaction. This reaction was the first example of a carbon-carbon bond-forming reaction that followed a Pd(0)/Pd(II) catalytic cycle, the same catalytic cycle that is seen in other Pd(0)-catalyzed cross-coupling reactions. The Heck reaction is a way to substitute alkenes.

The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of palladium-catalyzed cross-couplings in organic synthesis. This reaction is also known as the Suzuki–Miyaura reaction or simply as the Suzuki coupling. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls. Several reviews have been published describing advancements and the development of the Suzuki reaction. The general scheme for the Suzuki reaction is shown below, where a carbon-carbon single bond is formed by coupling an organoboron species (R1-BY2) with a halide (R2-X) using a palladium catalyst and a base.

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

Transition metal pincer complex

In chemistry, a transition metal pincer complex is a type of coordination complex with a pincer ligand. Pincer ligands are chelating agents that binds tightly to three adjacent coplanar sites in a meridional configuration. The inflexibility of the pincer-metal interaction confers high thermal stability to the resulting complexes. This stability is in part ascribed to the constrained geometry of the pincer, which inhibits cyclometallation of the organic substituents on the donor sites at each end. In the absence of this effect, cyclometallation is often a significant deactivation process for complexes, in particular limiting their ability to effect C-H bond activation. The organic substituents also define a hydrophobic pocket around the reactive coordination site. Stoichiometric and catalytic applications of pincer complexes have been studied at an accelerating pace since the mid-1970s. Most pincer ligands contain phosphines. Reactions of metal-pincer complexes are localized at three sites perpendicular to the plane of the pincer ligand, although in some cases one arm is hemi-labile and an additional coordination site is generated transiently. Early examples of pincer ligands were anionic with a carbanion as the central donor site and flanking phosphine donors; these compounds are referred to as PCP pincers.

Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond. Palladium is also prominent in carbon-carbon coupling reactions, as demonstrated in tandem reactions.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds. This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity. The Hiyama coupling has been applied to the synthesis of various natural products.

The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) species is generally utilized as the metal catalyst, though nickel is sometimes used. A variety of nickel catalysts in either Ni0 or NiII oxidation state can be employed in Negishi cross couplings such as Ni(PPh3)4, Ni(acac)2, Ni(COD)2 etc.

Transmetalation (alt. spelling: transmetallation) is a type of organometallic reaction that involves the transfer of ligands from one metal to another. It has the general form:

In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts, typically nickel or palladium, to couple a combination of two alkyl, aryl or vinyl groups. The groups of Robert Corriu and Makoto Kumada reported the reaction independently in 1972.

Richard F. Heck American chemist

Richard Frederick Heck was an American chemist noted for the discovery and development of the Heck reaction, which uses palladium to catalyze organic chemical reactions that couple aryl halides with alkenes. The analgesic naproxen is an example of a compound that is prepared industrially using the Heck reaction.

In organic chemistry, a cross-coupling reaction is a reaction where two fragments are joined together with the aid of a metal catalyst. In one important reaction type, a main group organometallic compound of the type R-M reacts with an organic halide of the type R'-X with formation of a new carbon–carbon bond in the product R-R'. Cross-coupling reaction are a subset of coupling reactions. It is often used in arylations.

Bis(triphenylphosphine)palladium chloride Chemical compound

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

PEPPSI

PEPPSI is an abbreviation for pyridine-enhanced precatalyst preparation stabilization and initiation. It refers to a family of commercially available palladium catalysts developed around 2005 by Prof. Michael G. Organ and co-workers at York University, which can accelerate various carbon-carbon and carbon-heteroatom bond forming cross-coupling reactions. In comparison to many alternative palladium catalysts, Pd-PEPPSI-type complexes are stable to air and moisture and are relatively easy to synthesize and handle.

Mesoionic carbenes (MICs) are a type of reactive intermediate that are related to N-heterocyclic carbenes (NHCs) and are used in scientific research in chemistry. Unlike simple NHCs, the canonical resonance structures of these carbenes are mesoionic: an MIC cannot be drawn without adding additional charges to some of the atoms. MICs re also called abnormal N-heterocyclic carbenes (aNHC) or remote N-heterocyclic carbenes (rNHC). A variety of free carbenes can be isolated and are stable at room temperature. Other free carbenes are not stable and are susceptible to intermolecular decomposition pathways. MICs do not dimerize according to Wanzlick equilibrium as do normal NHCs. This results in relaxed steric requirements for mesoionic carbenes as compared to NHCs. There are several mesoionic carbenes that cannot be generated as free compounds, but can be synthesized as a ligand in a transition metal complex. Most MIC transition metal complexes are less sensitive to air and moisture than phosphine or normal NHC complexes. They are also resistant to oxidation. The robust nature of MIC complexes is due to the ligand’s strong σ-donating ability. They are stronger σ-donors than phosphines, as well as normal N-heterocyclic carbenes due to decreased heteroatom stabilization. The strength of carbene ligands is attributed to the electropositive carbon center that forms strong bonds of a covalent nature with the metal. They have been shown to lower the frequency of CO stretching vibrations in metal complexes and exhibit large trans effects.

Transition metal NHC complex

In coordination chemistry, a transition metal NHC complex is a metal complex containing one or more N-heterocyclic carbene ligands. Such compounds are the subject of much research, in part because of prospective applications in homogeneous catalysis. One such success is the second generation Grubbs catalyst.

In organic and organometallic chemistry, dialkylbiaryl phosphine (or dialkylbiarylphosphine) ligands are phosphorus-containing supporting ligands that are used to modulate the chemical reactivity of palladium and other transition metal based catalysts. They were first described by Stephen L. Buchwald in 1998 for applications in palladium-catalyzed coupling reactions to form carbon-nitrogen and carbon-carbon bonds. Before their development, use of first- or second-generation phosphine ligands for palladium-catalyzed C-N bond-forming cross-coupling (e.g., tris(o-tolyl)phosphine and BINAP, respectively) necessitated harsh conditions, and the scope of the transformation was severely limited. The Suzuki-Miyaura and Negishi cross-coupling reactions were typically performed with Pd(PPh3)4 as catalyst and were mostly limited to aryl bromides and iodides at elevated temperatures, while the widely available aryl chlorides were unreactive. The development of new classes of ligands was needed to address these limitations.

Ajai Kumar Singh is an Indian chemist and Emeritus Professor of Chemistry at IIT Delhi. Singh is known for his contribution to the development of new organochalcogen ligand family and their metal complexes for promoting carbon-carbon coupling and related transformations. Singh is an honorary member of Science Faculty of the University of Delhi.

Miyaura borylation, also known as the Miyaura borylation reaction, is a named reaction in organic chemistry that allows for the generation of boronates from vinyl or aryl halides with the cross-coupling of bis(pinacolato)diboron in basic conditions with a catalyst such as PdCl2(dppf). The resulting borylated products can be used as coupling partners for the Suzuki reaction.

Heterogeneous metal catalyzed cross-coupling is a subset of metal catalyzed cross-coupling in which a heterogeneous metal catalyst is employed. Generally heterogeneous cross-coupling catalysts consist of a metal dispersed on an inorganic surface or bound to a polymeric support with ligands. Heterogeneous catalysts provide potential benefits over homogeneous catalysts in chemical processes in which cross-coupling is commonly employed—particularly in the fine chemical industry—including recyclability and lower metal contamination of reaction products. However, for cross-coupling reactions, heterogeneous metal catalysts can suffer from pitfalls such as poor turnover and poor substrate scope, which have limited their utility in cross-coupling reactions to date relative to homogeneous catalysts. Heterogeneous metal catalyzed cross-couplings, as with homogeneous metal catalyzed ones, most commonly use Pd as the cross-coupling metal.

References

  1. 1 2 Marion, Nicolas; Navarro, Oscar; Mei, Jianguo; Stevens, Edwin D.; Scott, Natalie M.; Nolan, Steven P. (March 2006). "Modified (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki−Miyaura and Buchwald−Hartwig Reactions". Journal of the American Chemical Society. 128 (12): 4101–4111. doi:10.1021/ja057704z. PMID   16551119.
  2. Viciu, Mihai S.; Navarro, Oscar; Germaneau, Romain F.; Kelly, Roy A.; Sommer, William; Marion, Nicolas; Stevens, Edwin D.; Cavallo, Luigi; Nolan, Steven P. (March 2004). "Synthetic and Structural Studies of (NHC)Pd(allyl)Cl Complexes (NHC = N-heterocyclic carbene)". Organometallics. 23 (7): 1629–1635. doi:10.1021/om034319e.
  3. "NHC-based Palladium Catalysts". Sigma-Aldrich. Retrieved 24 October 2017. Open Access logo PLoS transparent.svg
  4. 1 2 3 4 5 6 7 Fortman, George; Nolan, Steven (2011). "N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union". Chemical Society Reviews. 40 (10): 5151–5169. doi:10.1039/C1CS15088J. PMID   21731956.
  5. Eastman, K. "N-Heterocyclic Carbenes (NHCs)" (PDF). www.scripps.edu.
  6. Gstöttmayr, Christian; Volker, Böhm; Eberhardt, Herdtweck; Grosche, Manja; Herrmann, Wolfgang (2002). "A Defined N-Heterocyclic Carbene Complex for the Palladium-Catalyzed Suzuki Cross- Coupling of Aryl Chlorides at Ambient Temperatures". Angewandte Chemie International Edition. 41 (8): 1363–1365. doi:10.1002/1521-3773(20020415)41:8<1363::aid-anie1363>3.0.co;2-g.
  7. Nasielski, J.; Hadei, N.; Achonduh, G; E. A. B., Kantchev; O'Brien, C.J. (2010). "Structure–Activity Relationship Analysis of Pd–PEPPSI Complexes in Cross-Couplings: A Close Inspection of the Catalytic Cycle and the Precatalyst Activation Model". Chemistry: A European Journal. 16 (35): 10844–10853. doi:10.1002/chem.201000138. PMID   20665575.
  8. Niloufar, Hadei; Kantchev, Eric; O'Brien, Christopher (2005). "The First Negishi Cross-Coupling Reaction of Two Alkyl Centers Utilizing aPd − N-Heterocyclic Carbene (NHC) Catalyst". Organic Letters. 7 (17): 3805–3807. doi:10.1021/ol0514909. PMID   16092880.
  9. Batey, Robert; Shen, Ming; Lough, Alan (2002). "Carbamoyl-Substituted N-Heterocyclic Carbene Complexes of Palladium(II): Application to Sonogashira Cross-Coupling Reactions". Organic Letters. 14 (9): 1411–1414. doi:10.1021/ol017245g.
  10. Kim, Jong-Ho; Lee, Dong-Ho; Jun, Bong-Hyun; Lee, Yoon-Sik (2007). "Copper-free Sonogashira cross-coupling reaction catalyzed by polymer-supported N-heterocyclic carbene palladium complex". Tetrahedron Letters. 48 (40): 7079–7084. doi:10.1016/j.tetlet.2007.08.015.
  11. Chinchilla, Rafael; Nàjera, Carmen (2007). "The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry". Chemical Reviews. 107 (3): 874–922. doi:10.1021/cr050992x. PMID   17305399.
  12. McGuinness, David; Cavell, Kingsley (2000). "Donor-Functionalized Heterocyclic Carbene Complexes of Palladium(II): Efficient Catalysts for C - C Coupling Reactions". Organometallics. 19 (5): 741–748. doi:10.1021/om990776c.
  13. Taige, Maria; Zeller, Alexander; Ahrens, Sebastian; Goutal, Sigrid; Hardtweck, Eberhardt (2006). "New Pd–NHC-complexes for the Mizoroki–Heck reaction". Journal of Organometallic Chemistry. 692 (7): 1519–1529. doi:10.1016/j.jorganchem.2006.11.050.