Transition metal NHC complex

Last updated

In coordination chemistry, a transition metal NHC complex is a metal complex containing one or more N-heterocyclic carbene ligands. Such compounds are the subject of much research, in part because of prospective applications in homogeneous catalysis. One such success is the second generation Grubbs catalyst. [1]

Contents

IMes is a popular NHC ligand. 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (aka IMes).png
IMes is a popular NHC ligand.

Historically, N-heterocyclic carbenes were thought to mimic properties of tertiary phosphines. Many steric and electronic differences exist between the two ligands. [2] Compared to phosphine ligands, NHC ligands' cone angle is more complex. The imidazole ring of the NHC ligand is angled away from the metal center, yet the substituents at the 1,3 positions of the imidazole ring are angled towards it. The presence of the ligand inside of the metal coordination sphere affects the metal reactivity. In terms of electronic effects, NHC are often stronger sigma donation. [2] [3]

Second generation Grubbs catalyst is a transition metal NHC complex, is useful for alkene metathesis reactions. Grubbs catalyst Gen2.svg
Second generation Grubbs catalyst is a transition metal NHC complex, is useful for alkene metathesis reactions.

Synthesis

From free NHCs

The popularization of NHC ligands can be traced to Arduengo, [4] who reported the deprotonation of dimesitylimidazolium cation to give IMes. [5] IMes is a free NHC that can be used as a ligand. Other NHCs have been isolated as the free ligands. [6] Aside from IMes, another important NHC ligand is IPr, which features diisopropylphenyl groups in place of the mesityl groups. [1] [7] NHCs with saturated backbones include SIMes and SIPr.

SIMes is a popular NHC ligand with a more flexible backbone compared to IMes SIMes.png
SIMes is a popular NHC ligand with a more flexible backbone compared to IMes

Transmetallation of silver-NHC reagents

Usually, transition metal NHC complexes are prepared less directly. A popular method entails transmetallation of silver-NHC complexes. Such reagents are generated by the reaction of silver(I) oxide with the imidazolium salt. [8]

Other methods

A third method involves decarboxylation of NHC-carboxylates. In this approach, N-methylimidazoles react with methyl formate to give zwitterionic N,N'-dimethylimidazolium-2-carboxylate. This zwitterion decarboxylates in the presence of metal ions to give N,N'dimethylimidazolidene-based NHC complexes. [9]

See also

Related Research Articles

In chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is R-(C:)-R' or R=C: where the R represent substituents or hydrogen atoms.

Hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group (CHO) and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: Production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resulting aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and drugs. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

Grubbs catalyst Chemical compound

Grubbs catalysts are a series of transition metal carbene complexes used as catalysts for olefin metathesis. They are named after Robert H. Grubbs, the chemist who supervised their synthesis. Several generations of the catalyst have been developed. Grubbs catalysts tolerate many functional groups in the alkene substrates, are air-tolerant, and are compatible with a wide range of solvents. For these reasons, Grubbs catalysts have become popular in synthetic organic chemistry. Grubbs, together with Richard R. Schrock and Yves Chauvin, won the Nobel Prize in Chemistry in recognition of their contributions to the development of olefin metathesis.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

Persistent carbene

A persistent carbene (also known as stable carbene) is a type of carbene demonstrating particular stability. The best-known examples and by far largest subgroup are the N-heterocyclic carbenes (NHC) (sometimes called Arduengo carbenes), for example diaminocarbenes with the general formula (R2N)2C:, where the 'R's are typically alkyl and aryl groups. The groups can be linked to give heterocyclic carbenes, such as those derived from imidazole, imidazoline, thiazole or triazole.

2,6-Xylidine Chemical compound

2,6-Xylidine is an organic compound with the formula C6H3(CH3)2NH2. It is one of several isomeric xylidines. It is a colorless viscous liquid. Commercially significant derivatives are the anesthetics lidocaine, bupivacaine, mepivacaine, and etidocaine.

2,4,6-Trimethylaniline Chemical compound

2,4,6-Trimethylaniline is an organic compound with formula (CH3)3C6H2NH2. It is an aromatic amine that is of commercial interest as a precursor to dyes. It is prepared by selective mononitration of mesitylene, avoiding oxidation of the methyl groups. The resulting nitro compound is reduced to the aniline.

Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information to transfer from one molecule to the target, forming the product as a single enantiomer. The chiral information is most commonly contained in a catalyst and, in this case, the information in a single molecule of catalyst may be transferred to many substrate molecules, amplifying the amount of chiral information present. Similar processes occur in nature, where a chiral molecule like an enzyme can catalyse the introduction of a chiral centre to give a product as a single enantiomer, such as amino acids, that a cell needs to function. By imitating this process, chemists can generate many novel synthetic molecules that interact with biological systems in specific ways, leading to new pharmaceutical agents and agrochemicals. The importance of asymmetric hydrogenation in both academia and industry contributed to two of its pioneers — William Standish Knowles and Ryōji Noyori — being awarded one half of the 2001 Nobel Prize in Chemistry.

IMes is an abbreviation for an organic compound that is a common ligand in organometallic chemistry. It is an N-heterocyclic carbene (NHC). The compound, a white solid, is often not isolated but instead is generated upon attachment to the metal centre.

Organoruthenium chemistry

Organoruthenium chemistry is the chemistry of organometallic compounds containing a carbon to ruthenium chemical bond. Several organoruthenium catalysts are of commercial interest and organoruthenium compounds have been considered for cancer therapy. The chemistry has some stoichiometric similarities with organoiron chemistry, as iron is directly above ruthenium in group 8 of the periodic table. The most important reagents for the introduction of ruthenium are ruthenium(III) chloride and triruthenium dodecacarbonyl.

Metal carbon dioxide complexes are coordination complexes that contain carbon dioxide ligands. Aside from the fundamental interest in the coordination chemistry of simple molecules, studies in this field are motivated by the possibility that transition metals might catalyze useful transformations of CO2. This research is relevant both to organic synthesis and to the production of "solar fuels" that would avoid the use of petroleum-based fuels.

PEPPSI


PEPPSI is an abbreviation for pyridine-enhanced precatalyst preparation stabilization and initiation. It refers to a group of palladium catalysts developed around 2005 by Prof. Michael G. Organ and co-workers at York University, which can accelerate various aminations and cross-coupling reactions. In comparison to many alternative palladium catalysts, PEPPSI-type complexes are stable to air and moisture and are relatively easy to synthesize and handle.

Tolman electronic parameter

The Tolman electronic parameter (TEP) is a measure of the electron donating or withdrawing ability of a ligand. It is determined by measuring the frequency of the A1 C-O vibrational mode (ν(CO)) of a (pseudo)-C3v symmetric complex, [LNi(CO)3] by infrared spectroscopy, where L is the ligand of interest. [LNi(CO)3] was chosen as the model compound because such complexes are readily prepared from tetracarbonylnickel(0). The shift in ν(CO) is used to infer the electronic properties of a ligand, which can aid in understanding its behavior in other complexes. The analysis was introduced by Chadwick A. Tolman.

Metal phosphine complex

In coordination chemistry phosphines are L-type ligands. Unlike most metal ammine complexes, metal phosphine complexes tend to be lipophilic, displaying good solubility in organic solvents. They also are compatible with metals in multiple oxidation states. Because of these two features, metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

Mesoionic carbenes (MICs) are a type of reactive intermediate that are related to N-heterocyclic carbenes (NHCs) and are used in scientific research in chemistry. Unlike simple NHCs, the canonical resonance structures of these carbenes are mesoionic: an MIC cannot be drawn without adding additional charges to some of the atoms. MICs re also called abnormal N-heterocyclic carbenes (aNHC) or remote N-heterocyclic carbenes (rNHC). A variety of free carbenes can be isolated and are stable at room temperature. Other free carbenes are not stable and are susceptible to intermolecular decomposition pathways. MICs do not dimerize according to Wanzlick equilibrium as do normal NHCs. This results in relaxed steric requirements for mesoionic carbenes as compared to NHCs. There are several mesoionic carbenes that cannot be generated as free compounds, but can be synthesized as a ligand in a transition metal complex. Most MIC transition metal complexes are less sensitive to air and moisture than phosphine or normal NHC complexes. They are also resistant to oxidation. The robust nature of MIC complexes is due to the ligand’s strong σ-donating ability. They are stronger σ-donors than phosphines, as well as normal N-heterocyclic carbenes due to decreased heteroatom stabilization. The strength of carbene ligands is attributed to the electropositive carbon center that forms strong bonds of a covalent nature with the metal. They have been shown to lower the frequency of CO stretching vibrations in metal complexes and exhibit large trans effects.

Weak-Link Approach

The Weak-Link Approach (WLA) is a supramolecular coordination-based assembly methodology, first introduced in 1998 by the Mirkin Group at Northwestern University. This method takes advantage of hemilabile ligands -ligands that contain both strong and weak binding moieties- that can coordinate to metal centers and quantitatively assemble into a single condensed ‘closed’ structure. Unlike other supramolecular assembly methods, the WLA allows for the synthesis of supramolecular complexes that can be modulated from rigid ‘closed’ structures to flexible ‘open’ structures through reversible binding of allosteric effectors at the structural metal centers. The approach is general and has been applied to a variety of metal centers and ligand designs including those with utility in catalysis and allosteric regulation.

Diiron propanedithiolate hexacarbonyl Chemical compound

Diiron propanedithiolate hexacarbonyl is the organoiron complex with the formula Fe2(S2C3H6)(CO)6. It is a red diamagnetic solid. It adopts a symmetrical structure with six terminal CO ligands. The complex is a precursor to hydrogenase mimics.

Diimines are organic compounds containing two imine (RCH=NR') groups. Common derivatives are 1,2-diketones and 1,3-diimines. These compounds are used as ligands and as precursors to heterocycles. Diimines are prepared by condensation reactions where a dialdehyde or diketone is treated with amine and water is eliminated. Similar methods are used to prepare Schiff bases and oximes.

Rhodium carbonyl chloride Chemical compound

Rhodium carbonyl chloride is an organorhodium compound with the formula Rh2Cl2(CO)4. It is a red-brown volatile solid that is soluble in nonpolar organic solvents. It is a precursor to other rhodium carbonyl complexes, some of which are useful in homogeneous catalysis.

Palladium–NHC complex

In organometallic chemistry, palladium-NHC complexes are a family of organopalladium compounds in which palladium forms a coordination complex with N-Heterocyclic carbenes (NHCs). They have been investigated for applications in homogeneous catalysis, particularly cross-coupling reactions.

References

  1. 1 2 Steven P. Nolan "N-Heterocyclic Carbenes in Synthesis" Wiley-VCH, 2006. ISBN   978-3-527-60940-6.
  2. 1 2 Fortman, George; Nolan, Steven (2011). "N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union". Chemical Society Reviews. 40 (10): 5151–5169. doi:10.1039/C1CS15088J. PMID   21731956.
  3. Eastman, K. "N-Heterocyclic Carbenes (NHCs)" (PDF). www.scripps.edu.
  4. Arduengo, Anthony J.; III; Dias, H. V. Rasika; Harlow, Richard L.; Kline, Michael (1992). "Electronic Stabilization of Nucleophilic Carbenes". Journal of the American Chemical Society. 114 (14): 5530–4. doi:10.1021/ja00040a007.
  5. Ison, Elon A.; Ison, Ana (2012). "Synthesis of Well-Defined Copper N-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment That Emphasizes the Role of Catalysis in Green Chemistry". J. Chem. Educ. 89 (12): 1575–1577. doi:10.1021/ed300243s.
  6. Schaub, Thomas; Radius, Udo (2010). "1,3-Dialkyl-Imidazole-2-Ylidenes". Inorg. Synth. 35: 78–83. doi:10.1002/9780470651568.ch4.
  7. Hans, Morgan; Delaude, Lionel (2010). "Microwave-Assisted Synthesis of 1,3-Dimesitylimidazolium Chloride". Org. Synth. 87: 77. doi: 10.15227/orgsyn.087.0077 .
  8. Hin Leung, Chin; Chianese, Anthony R.; Garrett, Benjamin R.; Letko, Christopher S.; Crabtree, Robert H. (2010). "A Chelating Rhodium N-Heterocyclic Carbene Complex By Transmetallation From A Silver–NHC Intermediate". Inorg. Synth. 35: 84–87. doi:10.1002/9780470651568.ch4.
  9. Voutchkova, Adelina M.; Crabtree, Robert H. (2010). "Rhodium and Iridium N-Heterocyclic Carbene Complexes From Imidazolium Carboxylates". Inorg. Synth. 35: 88–91. doi:10.1002/9780470651568.ch4.