IMes

Last updated
IMes
1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (aka IMes).png
Names
Preferred IUPAC name
1,3-Bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene
Other names
1,3-Dimesitylimidazol-2-ylidene, 1,3-bis(2,4,6-trimethylphenyl)-imidazolium, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.154.201 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/C21H24N2/c1-14-9-16(3)20(17(4)10-14)22-7-8-23(13-22)21-18(5)11-15(2)12-19(21)6/h7-12H,1-6H3
    Key: JCYWCSGERIELPG-UHFFFAOYSA-N
  • InChI=1/C21H24N2/c1-14-9-16(3)20(17(4)10-14)22-7-8-23(13-22)21-18(5)11-15(2)12-19(21)6/h7-12H,1-6H3
    Key: JCYWCSGERIELPG-UHFFFAOYAJ
  • Cc1cc(c(c(c1)C)N2C=CN([C]2)c3c(cc(cc3C)C)C)C
Properties
C21H24N2
Molar mass 304.43
Appearancewhite solid
Melting point 150 to 155 °C (302 to 311 °F; 423 to 428 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

IMes is an abbreviation for an organic compound that is a common ligand in organometallic chemistry. It is an N-heterocyclic carbene (NHC). The compound, a white solid, is often not isolated but instead is generated upon attachment to the metal centre. [1]

Contents

First prepared by Arduengo, [2] the heterocycle is synthesized by condensation of 2,4,6-trimethylaniline and glyoxal to give the diimine. In the presence of acid, the resulting glyoxal-bis(mesitylimine) condenses with formaldehyde to give the dimesitylimidazolium cation. This cation is the conjugate acid of the NHC. [3] [4]

Bulkier than IMes is the NHC ligand IPr (CAS  244187-81-3). IPr features diisopropylphenyl in place of the mesityl substituents. [5]

Some variants of IMes and IPr have saturated backbones, two such ligands are SIMes and SIPr. [1] They are prepared by alkylation of substituted anilines with dibromoethane followed by ring closure and dehydrohalogenation of the dihydroimidazolium salt. [6]

SIMes is a popular NHC ligand with a more flexible backbone compared to IMes SIMes.png
SIMes is a popular NHC ligand with a more flexible backbone compared to IMes

Related Research Articles

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

Grubbs catalysts are a series of transition metal carbene complexes used as catalysts for olefin metathesis. They are named after Robert H. Grubbs, the chemist who supervised their synthesis. Several generations of the catalyst have also been developed. Grubbs catalysts tolerate many functional groups in the alkene substrates, are air-tolerant, and are compatible with a wide range of solvents. For these reasons, Grubbs catalysts have become popular in synthetic organic chemistry. Grubbs, together with Richard R. Schrock and Yves Chauvin, won the Nobel Prize in Chemistry in recognition of their contributions to the development of olefin metathesis.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

The Ullmann condensation or Ullmann-type reaction is the copper-promoted conversion of aryl halides to aryl ethers, aryl thioethers, aryl nitriles, and aryl amines. These reactions are examples of cross-coupling reactions.

1,3,5-Triazine, also called s-triazine, is an organic chemical compound with the formula (HCN)3. It is a six-membered heterocyclic aromatic ring, one of several isomeric triazines. S-triazine—the "symmetric" isomer—and its derivatives are useful in a variety of applications.

<span class="mw-page-title-main">Persistent carbene</span> Type of carbene demonstrating particular stability

A persistent carbene (also known as stable carbene) is a type of carbene demonstrating particular stability. The best-known examples and by far largest subgroup are the N-heterocyclic carbenes (NHC) (sometimes called Arduengo carbenes), for example diaminocarbenes with the general formula (R2N)2C:, where the four R moieties are typically alkyl and aryl groups. The groups can be linked to give heterocyclic carbenes, such as those derived from imidazole, imidazoline, thiazole or triazole.

The triazol-5-ylidenes are a group of persistent carbenes which includes the 1,2,4-triazol-5-ylidene system and the 1,2,3-triazol-5-ylidene system. As opposed to the now ubiquitous NHC systems based on imidazole rings, these carbenes are structured from triazole rings. 1,2,4-triazol-5-ylidene can be thought of as an analog member of the NHC family, with an extra nitrogen in the ring, while 1,2,3-triazol-5-ylidene is better thought of as a mesoionic carbene (MIC). Both isomers of this group of carbenes benefit from enhanced stability, with certain examples exhibiting greater thermal stability, and others extended shelf life.

<span class="mw-page-title-main">2,4,6-Trimethylaniline</span> Chemical compound

2,4,6-Trimethylaniline is an organic compound with formula (CH3)3C6H2NH2. It is an aromatic amine that is of commercial interest as a precursor to dyes. It is prepared by selective nitration of mesitylene, avoiding oxidation of the methyl groups, followed by reduction of the resulting nitro group to the aniline.

<span class="mw-page-title-main">Organoruthenium chemistry</span>

Organoruthenium chemistry is the chemistry of organometallic compounds containing a carbon to ruthenium chemical bond. Several organoruthenium catalysts are of commercial interest and organoruthenium compounds have been considered for cancer therapy. The chemistry has some stoichiometric similarities with organoiron chemistry, as iron is directly above ruthenium in group 8 of the periodic table. The most important reagents for the introduction of ruthenium are ruthenium(III) chloride and triruthenium dodecacarbonyl.

<span class="mw-page-title-main">Anthony Joseph Arduengo III</span> American chemist

Anthony Joseph Arduengo III is Professor of the Practice at the Georgia Institute of Technology, Saxon Professor Emeritus of Chemistry at the University of Alabama, adjunct professor at the Institute for Inorganic Chemistry of Braunschweig University of Technology in Germany, and co-founder of the StanCE coalition for sustainable chemistry based on woody biomass. He is notable for his work on chemical compounds with unusual valency, especially in the field of stable carbene research.

<span class="mw-page-title-main">PEPPSI</span> Group of chemical compounds

PEPPSI is an abbreviation for pyridine-enhanced precatalyst preparation stabilization and initiation. It refers to a family of commercially available palladium catalysts developed around 2005 by Prof. Michael G. Organ and co-workers at York University, which can accelerate various carbon-carbon and carbon-heteroatom bond forming cross-coupling reactions. In comparison to many alternative palladium catalysts, Pd-PEPPSI-type complexes are stable to air and moisture and are relatively easy to synthesize and handle.

Diiminopyridines are a class of diimine ligands. They featuring a pyridine nucleus with imine sidearms appended to the 2,6–positions. The three nitrogen centres bind metals in a tridentate fashion, forming pincer complexes. Diiminopyridines are notable as non-innocent ligand that can assume more than one oxidation state. Complexes of DIPs participate in a range of chemical reactions, including ethylene polymerization, hydrosilylation, and hydrogenation.

<span class="mw-page-title-main">SIMes</span> Chemical compound

SIMes (or H2Imes) is an N-heterocyclic carbene. It is a white solid that dissolves in organic solvents. The compound is used as a ligand in organometallic chemistry. It is structurally related to the more common ligand IMes but with a saturated backbone (the S of SIMes indicates a saturated backbone). It is slightly more flexible and is a component in Grubbs II. It is prepared by alkylation of trimethylaniline by dibromoethane followed by ring closure and dehydrohalogenation.

<span class="mw-page-title-main">Glyoxal-bis(mesitylimine)</span> Chemical compound

Glyoxal-bis(mesitylimine) is an organic compound with the formula H2C2(NC6H2Me3)2 (Me = methyl). It is a yellow solid that is soluble in organic solvents. It is classified as a diimine ligand. It is used in coordination chemistry and homogeneous catalysis. It is synthesized by condensation of 2,4,6-trimethylaniline and glyoxal. In addition to its direct use as a ligand, it is a precursor to imidazole precursors to the popular NHC ligand called IMes.

Diimines are organic compounds containing two imine (RCH=NR') groups. Common derivatives are 1,2-diketones and 1,3-diimines. These compounds are used as ligands and as precursors to heterocycles. Diimines are prepared by condensation reactions where a dialdehyde or diketone is treated with amine and water is eliminated. Similar methods are used to prepare Schiff bases and oximes.

<span class="mw-page-title-main">Palladium–NHC complex</span>

In organometallic chemistry, palladium-NHC complexes are a family of organopalladium compounds in which palladium forms a coordination complex with N-heterocyclic carbenes (NHCs). They have been investigated for applications in homogeneous catalysis, particularly cross-coupling reactions.

<span class="mw-page-title-main">Transition metal NHC complex</span>

In coordination chemistry, a transition metal NHC complex is a metal complex containing one or more N-heterocyclic carbene ligands. Such compounds are the subject of much research, in part because of prospective applications in homogeneous catalysis. One such success is the second generation Grubbs catalyst.

Coinage metal N-heterocyclic carbene (NHC) complexes refer to transition metal complexes incorporating at least one coinage metal center (M = Cu, Ag, Au) ligated by at least one NHC-type persistent carbene. A variety of such complexes have been synthesized through deprotonation of the appropriate imidazolium precursor and metalation by the appropriate metal source, producing MI, MII, or MIII NHC complexes. While the general form can be represented as (R2N)2C:–M (R = various alkyl or aryl groups), the exact nature of the bond between NHC and M has been investigated extensively through computational modeling and experimental probes. These results indicate that the M-NHC bond consists mostly of electrostatic attractive interactions, with some covalent bond character arising from NHC to M σ donation and minor M to NHC π back-donation. Coinage metal NHC complexes show effective activity as catalysts for various organic transformations functionalizing C-H and C-C bonds, and as antimicrobial and anticancer agents in medicinal chemistry.

<span class="mw-page-title-main">Carbones</span> Class of molecules

Carbones are a class of molecules containing a carbon atom in the 1D excited state with a formal oxidation state of zero where all four valence electrons exist as unbonded lone pairs. These carbon-based compounds are of the formula CL2 where L is a strongly σ-donating ligand, typically a phosphine (carbodiphosphoranes) or a N-heterocyclic carbene/NHC (carbodicarbenes), that stabilises the central carbon atom through donor-acceptor bonds. Carbones possess high-energy orbitals with both σ- and π-symmetry, making them strong Lewis bases and strong π-backdonor substituents. Carbones possess high proton affinities and are strong nucleophiles which allows them to function as ligands in a variety of main group and transition metal complexes. Carbone-coordinated elements also exhibit a variety of different reactivities and catalyse various organic and main group reactions.  

<span class="mw-page-title-main">Organoberyllium chemistry</span> Organoberyllium Complex in Main Group Chemistry

Organoberyllium chemistry involves the synthesis and properties of organometallic compounds featuring the group 2 alkaline earth metal beryllium (Be). The area remains understudied, relative to the chemistry of other main-group elements, because although metallic beryllium is relatively unreactive, its dust causes berylliosis and compounds are toxic. Organoberyllium compounds are typically prepared by transmetallation or alkylation of beryllium chloride.

References

  1. 1 2 Steven P. Nolan (2006). N-Heterocyclic Carbenes in Synthesis. Wiley-VCH. ISBN   978-3-527-60940-6.
  2. Arduengo, Anthony J.; Dias, H. V. Rasika; Harlow, Richard L.; Kline, Michael (1992). "Electronic stabilization of nucleophilic carbenes". Journal of the American Chemical Society. 114 (14): 5530–5534. doi:10.1021/ja00040a007.
  3. Ison, Elon A.; Ison, Ana (2012). "Synthesis of Well-Defined Copper N-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment That Emphasizes the Role of Catalysis in Green Chemistry". Journal of Chemical Education. 89 (12): 1575–1577. Bibcode:2012JChEd..89.1575I. doi:10.1021/ed300243s.
  4. Chen, Junting; Ritter, Tobias (2019). "Late-Stage Deoxyfluorination of Phenols with PhenoFluorMix". Org. Synth. 96: 16. doi: 10.15227/orgsyn.096.0016 .
  5. Morgan Hans; Lionel Delaude (2010). "Microwave-Assisted Synthesis of 1,3-Dimesitylimidazolium Chloride". Org. Synth. 87: 77. doi: 10.15227/orgsyn.087.0077 .
  6. Arnaud Gautier, Federico Cisnetti, Silvia Díez González, Clémentine Gibard (10 October 2012). "Synthesis of 1,3–bis(2,4,6–trimethylphenyl)–imidazolinium salts: SIMes·HCl, SIMes·HBr, SIMes·HBF4 and SIMes·HPF6". Protocol Exchange. doi:10.1038/protex.2012.048 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link) CS1 maint: multiple names: authors list (link)

Further reading