Arndt–Eistert reaction

Last updated

Contents

Arndt-Eistert reaction
Named after Fritz Arndt, Bernd Eistert
Reaction type Homologation reaction
Identifiers
Organic Chemistry Portal arndt-eistert-synthesis
RSC ontology ID RXNO:0000063

In organic chemistry, the Arndt–Eistert reaction is the conversion of a carboxylic acid to its homologue. It is named for the German chemists Fritz Arndt (18851969) and Bernd Eistert (19021978). The method entails treating an acid chlorides with diazomethane. It is a popular method of producing β-amino acids from α-amino acids. [1]

Conditions

Aside from the acid chloride substrate, three reagents are required: diazomethane, water, and a metal catalyst. Each has been well investigated.

The diazomethane is required in excess so as to react with the HCl formed previously. [2] Not taking diazomethane in excess results in HCl reacting with the diazoketone to form chloromethyl ketone and N2. Mild conditions allow this reaction to take place while not affecting complex or reducible groups in the reactant-acid. [3]

The reaction requires the presence of a nucleophile (water). A metal catalyst is required. Usually Ag2O is chosen but other metals and even light effect the reaction. [4]

Arndt-Eistert reaction with ketene intermediate. A-EpathRCOCl.png
Arndt-Eistert reaction with ketene intermediate.

Variants

The preparation of the beta-amino acid from phenylalanine illustrates the Arndt–Eistert synthesis carried out with the Newman–Beal modification, which involves the inclusion of triethylamine in the diazomethane solution. Either triethylamine or a second equivalent of diazomethane will scavenge HCl, avoiding the formation of α-chloromethylketone side-products. [5] [6] [7]

Diazomethane is the traditional reagent, but analogues can also be applied. [8] Diazomethane is toxic and potentially violently explosive, which has led to safer alternative procedures, [9] For example, diazo(trimethylsilyl)methane has been demonstrated. [10] [11]

Acid anhydrides can be used in place of acid chloride. The reaction yields a 1:1 mixture of the homologated acid and the corresponding methyl ester. [12]

This method can also be used with primary diazoalkanes, to produce secondary α-diazo ketones. However, there are many limitations. Primary diazoalkanes undergo azo coupling to form azines; thus the reaction conditions must be altered such that acid chloride is added to a solution of diazoalkane and triethylamine at low temperature. [13] [14] In addition, primary diazoalkanes are very reactive, incompatible with acidic functionalities, and will react with activated alkenes including α,β-unsaturated carbonyl compounds to give 1,3-dipolar cycloaddition products.

An alternative to the Arndt–Eistert reaction is the Kowalski ester homologation, which also involves the generation of a carbene equivalent but avoids diazomethane. [15]

Reaction mechanism

The acid chloride suffers attack by diazomethane with loss of HCl. The alpha-diazoketone (RC(O)CHN2) product undergoes the metal-catalyzed Wolff rearrangement to form a ketene, which hydrates to the acid. [16] [17] [4] The rearrangement leaves untouched the stereochemistry at the carbon alpha to the acid chloride. [6]

Homologation of N-boc-phenylalanine.png

Historical readings

See also

Related Research Articles

<span class="mw-page-title-main">Ketene</span> Organic compound of the form >C=C=O

In organic chemistry, a ketene is an organic compound of the form RR'C=C=O, where R and R' are two arbitrary monovalent chemical groups. The name may also refer to the specific compound ethenone H2C=C=O, the simplest ketene.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Diazomethane</span> Simplest diazo compound and methylating agent

Diazomethane is an organic chemical compound with the formula CH2N2, discovered by German chemist Hans von Pechmann in 1894. It is the simplest diazo compound. In the pure form at room temperature, it is an extremely sensitive explosive yellow gas; thus, it is almost universally used as a solution in diethyl ether. The compound is a popular methylating agent in the laboratory, but it is too hazardous to be employed on an industrial scale without special precautions. Use of diazomethane has been significantly reduced by the introduction of the safer and equivalent reagent trimethylsilyldiazomethane.

In organic chemistry, the diazo group is an organic moiety consisting of two linked nitrogen atoms at the terminal position. Overall charge-neutral organic compounds containing the diazo group bound to a carbon atom are called diazo compounds or diazoalkanes and are described by the general structural formula R2C=N+=N. The simplest example of a diazo compound is diazomethane, CH2N2. Diazo compounds should not be confused with azo compounds or with diazonium compounds.

The Simmons–Smith reaction is an organic cheletropic reaction involving an organozinc carbenoid that reacts with an alkene to form a cyclopropane. It is named after Howard Ensign Simmons, Jr. and Ronald D. Smith. It uses a methylene free radical intermediate that is delivered to both carbons of the alkene simultaneously, therefore the configuration of the double bond is preserved in the product and the reaction is stereospecific.

<span class="mw-page-title-main">Trimethylsilyldiazomethane</span> Chemical compound

Trimethylsilyldiazomethane is the organosilicon compound with the formula (CH3)3SiCHN2. It is classified as a diazo compound. Trimethylsilyldiazomethane, which is a commercially available, reagent used in organic chemistry as a methylating agent of carboxylic acids. Its behavior is akin to the reagent diazomethane, but the trimethylsilyl (TMS) analog is nonexplosive.

<span class="mw-page-title-main">Ring expansion and contraction</span> Chemical phenomenon within ring systems

Ring expansion and ring contraction reactions expand or contract rings, usually in organic chemistry. The term usually refers to reactions involve making and breaking C-C bonds, Diverse mechanisms lead to these kinds of reactions.

α-Halo ketone

In organic chemistry, an α-halo ketone is a functional group consisting of a ketone group or more generally a carbonyl group with an α-halogen substituent. α-Halo ketones are alkylating agents. Prominent α-halo ketones include phenacyl bromide and chloroacetone.

<span class="mw-page-title-main">Wolff rearrangement</span> Chemical reaction

The Wolff rearrangement is a reaction in organic chemistry in which an α-diazocarbonyl compound is converted into a ketene by loss of dinitrogen with accompanying 1,2-rearrangement. The Wolff rearrangement yields a ketene as an intermediate product, which can undergo nucleophilic attack with weakly acidic nucleophiles such as water, alcohols, and amines, to generate carboxylic acid derivatives or undergo [2+2] cycloaddition reactions to form four-membered rings. The mechanism of the Wolff rearrangement has been the subject of debate since its first use. No single mechanism sufficiently describes the reaction, and there are often competing concerted and carbene-mediated pathways; for simplicity, only the textbook, concerted mechanism is shown below. The reaction was discovered by Ludwig Wolff in 1902. The Wolff rearrangement has great synthetic utility due to the accessibility of α-diazocarbonyl compounds, variety of reactions from the ketene intermediate, and stereochemical retention of the migrating group. However, the Wolff rearrangement has limitations due to the highly reactive nature of α-diazocarbonyl compounds, which can undergo a variety of competing reactions.

<span class="mw-page-title-main">Schwartz's reagent</span> Chemical compound

Schwartz's reagent is the common name for the organozirconium compound with the formula (C5H5)2ZrHCl, sometimes called zirconocene hydrochloride or zirconocene chloride hydride, and is named after Jeffrey Schwartz, a chemistry professor at Princeton University. This metallocene is used in organic synthesis for various transformations of alkenes and alkynes.

<span class="mw-page-title-main">Cyclopropanation</span> Chemical process which generates cyclopropane rings

In organic chemistry, cyclopropanation refers to any chemical process which generates cyclopropane rings. It is an important process in modern chemistry as many useful compounds bear this motif; for example pyrethroid insecticides and a number of quinolone antibiotics. However, the high ring strain present in cyclopropanes makes them challenging to produce and generally requires the use of highly reactive species, such as carbenes, ylids and carbanions. Many of the reactions proceed in a cheletropic manner.

<span class="mw-page-title-main">Lead(IV) acetate</span> Organometallic compound (Pb(C2H3O2)4)

Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.

<span class="mw-page-title-main">Nierenstein reaction</span>

The Nierenstein reaction is an organic reaction describing the conversion of an acid chloride into a haloketone with diazomethane. It is an insertion reaction in that the methylene group from the diazomethane is inserted into the carbon-chlorine bond of the acid chloride.

In organic chemistry, a homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a methylene group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene units in saturated chain within the molecule. For example, the reaction of aldehydes or ketones with diazomethane or methoxymethylenetriphenylphosphine to give the next homologue in the series.

<span class="mw-page-title-main">Kowalski ester homologation</span>

The Kowalski ester homologation is a chemical reaction for the homologation of esters.

Methanesulfonyl chloride is an organosulfur compound with the formula CH3SO2Cl. Using the organic pseudoelement symbol Ms for the methanesulfonyl group CH3SO2–, it is frequently abbreviated MsCl in reaction schemes or equations. It is a colourless liquid that dissolves in polar organic solvents but is reactive toward water, alcohols, and many amines. The simplest organic sulfonyl chloride, it is used to make methanesulfonates and to generate the elusive molecule sulfene.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. It was first described by Eduard Buchner and Theodor Curtius in 1885 and later by Fritz Schlotterbeck in 1907. Two German chemists also preceded Schlotterbeck in discovery of the reaction, Hans von Pechmann in 1895 and Viktor Meyer in 1905. The reaction has since been extended to the synthesis of β-keto esters from the condensation between aldehydes and diazo esters. The general reaction scheme is as follows:

The Danheiser benzannulation is a chemical reaction used in organic chemistry to generate highly substituted phenols in a single step. It is named after Rick L. Danheiser who developed the reaction.

References

  1. Ye, T.; McKervey, M. A. (1994). "Organic Synthesis with α-Diazo Carbonyl Compounds". Chem. Rev. 94 (4): 1091–1160. doi:10.1021/cr00028a010.
  2. Lee, V.; Newman, M. S. (1970). "Ethyl 1-Naphthylacetate". Organic Syntheses . 50: 77; Collected Volumes, vol. 6, p. 613.
  3. Sanyal, S.N. (2003). Reactions, Rearrangements and Reagents (4 ed.). pp. 86, 87. ISBN   978-81-7709-605-7.
  4. 1 2 Kirmse, W. (2002). "100 Years of the Wolff Rearrangement". Eur. J. Org. Chem. 2002 (14): 2193–2256. doi:10.1002/1099-0690(200207)2002:14<2193::AID-EJOC2193>3.0.CO;2-D.
  5. Newman, M. S.; Beal, P. F. (1950). "An Improved Wolff Rearrangement in Homogeneous Medium". J. Am. Chem. Soc. 72 (11): 5163–5165. doi:10.1021/ja01167a101.
  6. 1 2 Linder, M. R.; Steurer, S.; Podlech, J. (2002). "(S)-3-(tert-Butyloxycarbonylamino)-4-phenylbutanoic acid". Organic Syntheses . 79: 154; Collected Volumes, vol. 10, p. 194.
  7. Clibbens, D. A. Nierenstein, M. (1915). "CLXV.—The action of diazomethane on some aromatic acyl chlorides". J. Chem. Soc. 107: 1491–1494. doi:10.1039/ct9150701491.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Danheiser, R. L.; Miller, R. F.; Brisbois, R. G. (1996). "Detrifluoroacetylative Diazo Group Transfer: (E)-1-Diazo-4-phenyl-3-buten-2-one". Organic Syntheses. 73: 134. doi:10.15227/orgsyn.073.0134.
  9. Katritzky, A. R.; Zhang, S.; Hussein, A. H. M.; Fang, Y.; Steel, P. J. (2001). "One-Carbon Homologation of Carboxylic Acids via BtCH2TMS: A Safe Alternative to the Arndt−Eistert Reaction". J. Org. Chem. 66 (16): 5606–5612. doi:10.1021/jo0017640. PMID   11485491.
  10. Aoyama, T.; Shiori, T. (1980). "New Methods and Reagents in Organic Synthesis. 8. Trimethylsilyldiazomethane. A New, Stable, and Safe Reagent for the Classical Arndt-Eistert Synthesis". Tetrahedron Lett. 21 (46): 4461–4462. doi:10.1016/S0040-4039(00)92200-7.
  11. Cesar, J.; Dolenc, M. S. (2001). "Trimethylsilyldiazomethane in the Preparation of Diazoketones via Mixed Anhydride and Coupling Reagent Methods: A New Approach to the Arndt–Eistert Synthesis". Tetrahedron Lett. 42 (40): 7099–7102. doi:10.1016/S0040-4039(01)01458-7.
  12. Bradley, W. Robinson, R. (1930). "The Action of Diazomethane on Benzoic and Succinic Anhydrides, and a Reply to Malkin and Nierenstein". J. Am. Chem. Soc. 52 (4): 1558–1565. doi:10.1021/ja01367a040.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Franzen, V. (1957). "Eine neue Methode zur Darstellung α,β-ungesättiger Ketone. Zerfall der Diazoketone R—CO—CN2—CH2—R′". Justus Liebigs Annalen der Chemie. 602: 199. doi:10.1002/jlac.19576020116.
  14. Yates, P. Farnum, D. G. Wiley, D. W. (1958). Chem. Ind.: 69.{{cite journal}}: Missing or empty |title= (help)CS1 maint: multiple names: authors list (link)
  15. Reddy, R. E.; Kowalski, C. J. (1993). "Ethyl 1-Naphthylacetate: Ester Homologation Via Ynolate Anions". Organic Syntheses. 71: 146. doi:10.15227/orgsyn.071.0146.
  16. Huggett, C.; Arnold, R. T.; Taylor, T. I. (1942). "The Mechanism of the Arndt-Eistert Reaction". J. Am. Chem. Soc. 64 (12): 3043. doi:10.1021/ja01264a505.
  17. Meier, H.; Zeller, K.-P. (1975). "The Wolff Rearrangement of α-Diazo Carbonyl Compounds". Angew. Chem. Int. Ed. 14 (1): 32–43. doi:10.1002/anie.197500321.