Hofmann–Löffler reaction

Last updated

Contents

Hofmann–Löffler–Freytag reaction
Named after August Wilhelm von Hofmann
Karl Löffler
Curt Freytag
Reaction type Ring forming reaction

In organic chemistry, the Hofmann–Löffler reaction (also referred to as Hofmann–Löffler–Freytag reaction, Löffler–Freytag reaction, Löffler–Hofmann reaction, as well as Löffler's method) is a cyclization reaction with remote C–H functionalization. [1] In the reaction, thermal or photochemical decomposition of N-halogenated amine 1 in the presence of a strong acid (concentrated sulfuric acid or concentrated CF3CO2H) generates a nitrogen radical intermediate. The radical then abstracts an intramolecular hydrogen atom to give a cyclic amine 2 (pyrrolidine or, in some cases, piperidine).

General scheme.gif

History

In 1878, the structure of piperidine was still unknown, and A. W. Hofmann believed it unsaturated. [2] Following standard analytical technique, Hofmann added hydrogen chloride or bromine to it in an attempt to induce hydrohalogenation. Instead, he produced N-haloamines and N-haloamides, whose reactions under acidic and basic conditions he investigated. [3] [4]

1bromo-2propyl­piperidine (3) and hot sulfuric acid, followed by basic work-up, formed a tertiary amine, [5] [6] later identified as δ-coneceine (4). [7]

Historical perspective Scheme 2.gif

No further examples of the reaction were reported for about 25 years. But in 1909, K. Löffler and C. Freytag extended the transformation to simple secondary amines and applied the process in their elegant synthesis of nicotine (6) from N-bromo-N-methyl-4-(pyridin-3-yl)butan-1-amine (5). [8] [9] [10]

Historical perspective Scheme 3.gif

The reaction mechanism only became clear around 1950, when S. Wawzonek investigated various N-haloamine cyclizations. [11] [12] [13] Noting that the hydrogen peroxide or ultraviolet light greatly improved yields, Wawzonek and Thelan [11] suggested a free-radical mechanism. E. J. Corey et al. then examined several features of the reaction: stereochemistry, hydrogen isotope effect, initiation, inhibition, catalysis, intermediates and selectivity of hydrogen transfer. [14] The results, presented below, conclusively supported Wawzonek and Thelan's hypothesis.

Reaction mechanism

According to Wawzonek and Thelan's 1949 proposal, [11] an acid first protonates an N-chloroamine, which, in the presence of heat, light, or other initiators, homolyzes to ammonium and chloride free radicals. The ammonium radical intramolecularly abstracts a sterically favored hydrogen atom to afford an alkyl radical which, in a chain reaction, abstracts chlorine from another N-chloroammonium ion to form an alkyl chloride and a new ammonium radical. The alkyl chloride later cyclizes during the basic work-up to the cyclic tertiary amine. [15]

Reaction mechanism Scheme 4.gif

Because the hydrogen abstraction is radical, any chiral configuration at the δ-carbon racemizes. [14]

The reaction also has a quite large hydrogen isotope effect: in the decomposition of 10, the ratio of 1,2-dimethylpyrrolidine 11 and 1,2-dimethylpyrrolidine-2-d12 (determined by combustion and IR spectra) suggests kHkD ≈ 3.423.54.

Reaction mechanism Scheme 5.gif

Comparable reactions at a primary carbon also give kHkD≫1, which strongly suggests that the breaking of the C-H bond proceeds to a rather considerable extent in the transition state. [14]

Initiation, inhibition, catalysis

Molecular oxygen inhibits the reaction (trapping the radicals), but Fe2+ salts initiate it. [14]

Further investigations demonstrated that both the rate of the ultraviolet-catalyzed decomposition of dibutylchloroamine and the yield of newly formed pyrrolidine are strongly dependent on the acidity of the reaction medium – faster and higher-yielding reaction was observed with increasing sulfuric acid concentration. [14]

An important question in discussing the role of the acid is whether the N-haloamine reacts in the free base or the salt form in the initiation step. Based on the pKa values of the conjugate acids of 2° alkyl amines (which are generally in the range 10–11), it is evident that N-chloroamines exist largely as salts in a solution of high sulfuric acid concentration. As a result, in the case of chemical or thermal initiation, it is reasonable to assume that it is the N-chloroammonium ion which affords the ammonium free radical. The situation changes, however, when the reaction is initiated upon irradiation with UV light. The radiation must be absorbed and the quantum of the incident light must be large enough to dissociate the N-Cl bond in order for a photochemical reaction to occur. Because the conjugate acids of the N-chloroamines have no appreciable UV absorption above 225 nm, whereas the free N-chloroamine absorb UV light of sufficient energy to cause dissociation (λmax 263 nm, εmax 300), [16] E. J. Corey postulated that in this case it is actually the small percentage of free N-chloroamine that is responsible for most of the initiation. It was also suggested that the newly generated neutral nitrogen radical is immediately protonated. However, it is important to realize that an alternative scenario might be in operation when the reaction is initiated with the UV light; namely, the free N-haloamine might not undergo dissociation upon irradiation, but it might function as a photosensitizer instead. While it was proposed that the higher acid concentration decreases the rate of the initiation step, the acid catalysis involves acceleration of the propagation steps and/or retardation of the chain termination. The influence of certain acidic solvents on the photolytic Hofmann–Löffler–Freytag reaction was also studied by Neale and co-workers. [17]

Intermediates

Isolation of 4-chlorodibutylamine from decomposition of dibutylchloroamine in H2SO4 confirmed the intermediacy of δ–chloroamines. [13] When the acidic solution is made basic, the δ–chloroamine cyclizes to give a cyclic amine and a chloride ion.

Selectivity of hydrogen transfer

In order to determine the structural and geometrical factors affecting the intramolecular hydrogen atom transfer, a number of different N-chloroamines were examined in the Hofmann–Löffler–Freytag reaction. The systems were judiciously chosen in order to obtain data on the following points: relative migration tendencies of primary (1°), secondary (2°) and tertiary (3°) hydrogens; relative rates of 1,5- and 1,6-hydrogen rearrangements; and facility of hydrogen rearrangements in cyclic systems of restricted geometry.

Investigation of the free radical decomposition of N-chlorobutylamylamine 13 allowed to determine 1° vs. 2° hydrogen migration. It was reported that only 1-n-butyl-2-methylpyrrolidine 14 was formed under the reaction conditions, no 1-n-amylpyrrolidine 15 was detected. This observation provided substantial evidence that the radical attack exhibits strong preference for the 2° over 1° hydrogen.

Reaction mechanism Scheme 6.gif

Tendency for 3° vs. 1° hydrogen migration was studied with n-butylisohexylamine 16. When 16 was subjected to the standard reaction conditions, rapid disappearance of 16 was observed, but no pyrrolidine product could be isolated. This result suggested that there is a high selectivity for the 3° hydrogen, but the intermediate tertiary chloro compound 17 is rapidly solvolyzed.

Reaction mechanism Scheme 7.gif

Similarly, no cyclic amine was observed with the reaction of n-amylisohexylamine, which demonstrates the selectivity for the 3° vs. 2° hydrogen migration.

A qualitative study of products from the Hofmann–Löffler–Freytag reaction of N-chloromethyl-n-hexylamine 18 was performed in order to evaluate the relative ease of 1,5- and 1,6-hydrogen migration. UV-catalyzed decomposition of 18 followed by basification produced a 9:1 mixture of 1-methyl-2-ethylpyrrolidine 19 and 1,2-dimethylpiperidine 20, which demonstrates that the extent of formation of six-membered rings can be appreciable.

Reaction mechanism Scheme 8.gif

In terms of the geometrical requirements in the intramolecular rearrangement of hydrogen, it was observed that under identical reaction conditions the UV light-catalyzed decomposition of methylcyclohexylchloroamine and N-chloroazacycloheptane proceeds far more slowly than that of dibutylchloroamine. These findings indicate that the prevailing geometries are in these two cases unfavourable for the rearrangement to occur and the Cδ–H–N bond angle required for the intramolecular hydrogen transfer cannot be easily attained.

Generally accepted mechanism

It is generally accepted that the first step in the Hofmann–Löffler–Freytag reaction conducted in acidic medium is the protonation of the N-halogenated amine 21 to form the corresponding N-halogenated ammonium salt 22. In case of thermal or chemical initiation of the free radical chain reaction, the N-halogenated ammonium salt 22 undergoes homolytic cleavage of the nitrogen-halogen bond to generate the nitrogen-centered radical cation 23. In contrast, it has been argued that the UV light-catalyzed initiation involves the free form of the N-haloamine and a rapid protonation of the newly generated neutral nitrogen radical (see the section devoted to mechanistic studies for arguments supporting this statement). Intramolecular 1,5-hydrogen atom transfer produces carbon-centered radical 24, which subsequently abstracts a halogen atom from the N-halogenated ammonium salt 22. This affords the protonated δ-halogenated amine 25 and regenerates the nitrogen-centered radical cation 23, the chain carrier of the reaction. Upon treatment with base, 25 undergoes deprotonation followed by an intramolecular SN2 reaction to yield pyrrolidine 28 via intermediate 27.

Reaction mechanism Scheme 9.gif

The preferential abstraction of the δ–hydrogen atom corresponds to a six-membered transition state, which can adopt the unstrained cyclohexane chair-type conformation 29.

Six membered TS for the Hofmann-Loffler-Freytag reaction.png

The Hofmann–Löffler–Freytag reaction is conceptually related to the well-known Barton reaction.

General features of the reaction

Modifications and improvements

Because the original strongly acidic reaction conditions are often not compatible with the sensitive functional and protecting groups of complex substrates, several modifications of the Hofmann–Löffler–Freytag reaction were introduced:

Modifications and improvements Scheme 11.gif
Modifications and improvements Scheme 12.gif

Similarly, S. W. Baldwin and T. J. Doll examined a modification of the Hofmann–Löffler–Freytag reaction during their studies towards the synthesis of the alkaloid gelsemicine 41. The formation of the pyrrolidine ring of 40 was accomplished by irradiation of N-chloroamide 39. [19]

Modifications and improvements Scheme 13.gif
Modifications and improvements Scheme 14.gif
Modifications and improvements Scheme 15.gif

The great advantage of the Suárez modification is that the reaction can be performed under very mild neutral conditions compatible with the stability of the protective groups most frequently used in synthetic organic chemistry. Consequently, it permits the use of the Hofmann–Löffler–Freytag reaction with more sensitive molecules. Other notable features of this methodology are the following: (1) the unstable iodoamide intermediates are generated in situ; (2) the iodoamide homolysis proceeds thermally at low temperature (20–40 °C) or by irradiation with visible light, which obviates the need for a UV lamp. The Suárez modification has found numerous applications in synthesis (vide infra).

Applications in synthesis

The most prevalent synthetic utility of the Hofmann–Löffler–Freytag reaction is the assembly of the pyrrolidine ring.

The Hofmann–Löffler–Freytag reaction under standard conditions

The procedure for the Hofmann–Löffler–Freytag reaction traditionally requires strongly acidic conditions, which limits its appeal. Nonetheless, it has been successfully applied to functionalization of a wide variety of structurally diverse molecules as exemplified below.

In 1980, J. P. Lavergne. et al. [31] used this methodology to prepare L-proline 49.

Applications in synthesis Scheme 16.png

P. E. Sonnet and J. E. Oliver [32] employed classic Hofmann–Löffler–Freytag reaction conditions in the synthesis of potential ant sex pheromone precursors (i.e. octahydroindolizine 51).

Applications in synthesis Scheme 17.png

Another example of the construction of a bicyclic amine through the standard Hofmann–Löffler–Freytag methodology is the Waegell's synthesis [33] of azabicyclo[3.2.1]octane derivative 53.

Applications in synthesis Scheme 18.png

The Hofmann–Löffler–Freytag reaction was employed to synthesize the bridged nitrogen structure of (±)-6,15,16-iminopodocarpane-8,11,13-triene 55, an intermediate useful for the preparation of the kobusine-type alkaloids, from a bicyclic chloroamine 54. [34] Irradiation of 54 with a 400 W high-pressure mercury lamp in trifluoroacetic acid under a nitrogen atmosphere at room temperature for 5 h afforded a moderate yield of the product.

Applications in synthesis Scheme 19.png

Derivatives of adamantane have also been prepared using the Hofmann–Löffler–Freytag reaction. [35] When N-chloroamine 56 was treated with sulfuric acid and heat, 2-adamantanone was formed, but photolysis of 56 in the sulfuric acid-acetic acid mixture, using a low-pressure mercury lamp at 25 °C for 1-hour gave a good yield (85%) of the desired product 57. The cyclization of 57 presented considerable difficulties, but it was finally achieved in 34% yield under forcing conditions (heating at 290 °C for 10 min).

Applications in synthesis Scheme 20.png

Similarly, it has been demonstrated [36] that derivatives of diaza-2,6 adamantane such as 60 might be formed under standard Hofmann–Löffler–Freytag reaction conditions; however, the yields are only moderate.

Applications in synthesis Scheme 21.png

R. P. Deshpande and U. R. Nayak [37] reported that the Hofmann–Löffler–Freytag reaction is applicable to the synthesis of pyrrolidines containing a longifolene nucleus, e.g. 62.

Applications in synthesis Scheme 22.png

An outstanding application of the Hofmann–Löffler–Freytag reaction is found in the preparation of the steroidal alkaloid derivatives. J. Hora [38] and G. van de Woude [39] [40] [41] used this procedure in their syntheses of conessine derivatives shown below.

Applications in synthesis Scheme 23.png

In case of 64 and 66, the five-membered nitrogen ring is formed by attack on the unactivated C-18 methyl group of the precursor (63 or 65, respectively) by a suitably placed nitrogen-centered radical at C-20. The ease of this reaction is due to the fact that in the rigid steroid framework the β-C-18 methyl group and the β-C-20 side chain carrying the nitrogen radical are suitably arranged in space in order to allow the 1,5-hydrogen abstraction to proceed via the six-membered transition state.

Example 8- Steroids H abstraction.png

The Hofmann–Löffler–Freytag reaction under mild conditions

A number of examples of the Hofmann–Löffler–Freytag reaction under neutral conditions have been presented in the section devoted to modifications and improvements of the original reaction conditions. Hence, the main focus of this section are the applications of the Suárez modification of the Hofmann–Löffler–Freytag reaction.

The Suárez modification of the Hofmann–Löffler–Freytag reaction was the basis of the new synthetic method developed by H. Togo et al. [42] [43] The authors demonstrated that various N-alkylsaccharins (N-alkyl-1,2-benzisothiazoline-3-one-1,1,-dioxides) 77 are easily prepared in moderate to good yields by the reaction of N-alkyl(o-methyl)arenesulfonamides 70 with PhI(OAc)2 in the presence of iodine under the irradiation of a tungsten lamp. 1,5 -Hydrogen abstraction/iodination of the o-methyl group is repeated three times and is most likely followed by cyclization to diiodo intermediate 76, which then undergoes hydrolysis.

Applications in synthesis Scheme 25.png

A very interesting transformation is observed when sulfonamides of primary amides bearing an aromatic ring at the γ-position are treated with various iodanes and iodine under the irradiation with a tungsten lamp. [44] The reaction leads to 1,2,3,4-tetrahydroquinoline derivatives and is a good preparative method of six-membered cyclic aromatic amines. For instance, sulfonamide 78 undergoes an intramolecular radical cyclization to afford 79 in relatively good yield.

Applications in synthesis Scheme 26.png

By the same procedure, 3,4-dihydro-2,1-benzothiazine-2,2-dioxides 81 are obtained from the N-alkyl 2-(aryl)ethanesulfonamides via the sulfonamidyl radical. [45]

Applications in synthesis Scheme 27.png

E. Suárez et al. [46] reported that the amidyl radical intermediates, produced by photolysis of medium-sized lactams, e.g. 82 in the presence of PhI(OAc)2 and iodine, undergo transannular hydrogen abstraction to afford intramolecularly funcionalized compounds such as oxoindolizidines 83.

Applications in synthesis Scheme 28.png

E. Suárez and co-workers [27] also applied their methodology in the synthesis of chiral 8-oxa-6-azabicyclo[3.2.1]-octane 85 and 7-oxa-2-azabicyclo[2.2.1]heptane 87 ring systems. This reaction can be considered to be an intramolecular N-glycosidation that goes through an intramolecular 1,5-hydrogen abstraction promoted by an N-amido radical followed by oxidation of the transient C-radical intermediate to an oxycarbenium ion, which is subsequently trapped by an internal nucleophile.

Applications in synthesis Scheme 29.png

The utility of the Suárez modification of the Hofmann–Löffler–Freytag reaction was demonstrated by its application in synthesis of a number of steroid and triterpene compounds. [25] [26] [28] [29] [47] As illustrated below, the phosphoramidate-initiated funcionalizations generally proceed in higher yields than the reactions involving N-nitro or N-cyanamides.

Applications in synthesis Scheme 30.png

In 2008 P.S. Baran et al. [48] reported a new method for the synthesis of 1,3-diols using a variant of the Hofmann–Löffler–Freytag reaction.

Scheme 31.svg

In 2017, Nagib et al. [49] [50] reported a new method for the synthesis of 1,2-amino-alcohols using a variant of the Hofmann–Löffler–Freytag reaction to promote β selective C-H amination of alcohols. In 2020, an asymmetric variant was disclosed by the same team. [51]

Beta amination.svg

See also

References

  1. Majetich, G.; Wheless, K. (1995). "Remote intramolecular free radical functionalizations: an update". Tetrahedron . 51 (26): 7095–7129. doi:10.1016/0040-4020(95)00406-X.
  2. Hofmann, A. W. (1879). "Zur Kenntniss des Piperidins und Pyridins". Ber. Dtsch. Chem. Ges. 12 (1): 984–990. doi:10.1002/cber.187901201254.
  3. Hofmann, A. W. (1881). "Ueber die Einwirkung des Broms in alkalischer Lösung auf Amide". Ber. Dtsch. Chem. Ges. 14 (2): 2725–2736. doi:10.1002/cber.188101402242.
  4. Hofmann, A. W. (1883). "Ueber die Einwirkung des Broms in alkalischer Lösung auf die Amine". Ber. Dtsch. Chem. Ges. 16 (1): 558–560. doi:10.1002/cber.188301601120.
  5. Hofmann, A. W. (1885). "Zur Kenntniss der Coniin-Gruppe". Ber. Dtsch. Chem. Ges. 18 (1): 5–23. doi:10.1002/cber.18850180103.
  6. Hofmann, A. W. (1885). "Zur Kenntniss der Coniin-Gruppe". Ber. Dtsch. Chem. Ges. 18 (1): 109–131. doi:10.1002/cber.18850180126.
  7. Lellmann, E. (1890). "Ueber die Coniceïne". Ber. Dtsch. Chem. Ges. 23 (2): 2141–2142. doi:10.1002/cber.18900230269.
  8. Löffler, K.; Freytag, C. (1909). "Über eine neue Bildungsweise von N-alkylierten Pyrrolidinen". Ber. Dtsch. Chem. Ges. 42 (3): 3427–3431. doi:10.1002/cber.19090420377.
  9. Löffler, K.; Kober, S. (1909). "Über die Bildung des i-Nicotins aus N-Methyl-p-pyridyl-butylamin (Dihydrometanicotin)". Ber. Dtsch. Chem. Ges. 42 (3): 3431–3438. doi:10.1002/cber.19090420378.
  10. Löffler, K. (1910). "Über eine neue Bildungsweise N-alkylierter Pyrrolidine". Ber. Dtsch. Chem. Ges. 43 (2): 2035–2048. doi:10.1002/cber.191004302146.
  11. 1 2 3 4 5 Wawzonek, S.; Thelan, P. J. (1950). "Preparation of N-methylgranatanine". J. Am. Chem. Soc. 72 (5): 2118–2120. Bibcode:1950JAChS..72.2118W. doi:10.1021/ja01161a068.
  12. Wawzonek, S.; Thelan, M. F. Jr; Thelan, P. J. (1951). "Preparation of quinuclidines". J. Am. Chem. Soc. 73 (6): 2806–2808. Bibcode:1951JAChS..73.2806W. doi:10.1021/ja01150a111.
  13. 1 2 Wawzonek, S.; Culbertson, T. P. (1959). "The formation of 4-chlorodibutylamine from N-chlorodibutylamine". J. Am. Chem. Soc. 81 (13): 3367–3369. Bibcode:1959JAChS..81.3367W. doi:10.1021/ja01522a053.
  14. 1 2 3 4 5 Corey, E. J.; Hertler, W. R. (1960). "A Study of the formation of haloamines and cyclic amines by the free radical chain decomposition of N-haloammonium ions (Hofmann-Löffler Reaction)". J. Am. Chem. Soc. 82 (7): 1657–1668. Bibcode:1960JAChS..82.1657C. doi:10.1021/ja01492a035.
  15. Wolff, M. E. (1963). "Cyclization of N-Halogenated Amines (The Hofmann–Löffler Reaction)". Chem. Rev. 63 (1): 55–64. doi:10.1021/cr60221a004.
  16. Metcalf, W. S. (1942). "The absorption spectra of mono-, di-, and tri-chloroamines and some aliphatic derivatives". J. Chem. Soc. : 148–150. doi:10.1039/JR9420000148.
  17. Neale, R. S.; Walsh, M. R.; Marcus, N. L. (1965). "The Influence of Solvent and Chloramine Structure on the Free-Radical Rearrangement Products of N-Chlorodialkylamines". J. Org. Chem. 30 (11): 3683. doi:10.1021/jo01022a022.
  18. Coleman, G. H.; Goheen, G. E. (1938). "Preparation of Pyrrolidines". J. Am. Chem. Soc. 60 (3): 730. doi:10.1021/ja01270a512.
  19. 1 2 Baldwin, S. W.; Doll, T. J. (1979). "Synthesis of the 2-aza-7-oxatricyclo[4.3.2.04,8]undecane nucleus of some gelsemium alkaloids". Tetrahedron Lett. 20 (35): 3275–3278. doi:10.1016/S0040-4039(01)95383-3.
  20. 1 2 3 4 Ban, Y.; Kimura, M.; Oishi, T. (1976). "A Synthesis of (±)-Dihydrodeoxyepiallocernuine by Application of a Facile Hofmann-Loeffler Type of Photocyclization". Chem. Pharm. Bull. 24 (7): 1490–1496. doi: 10.1248/cpb.24.1490 .
  21. Kimura, M.; Ban, Y. (1976). "A Synthesis of 1,3-Diaza Heterocycles. A Hofmann-Loeffler Type of Photocyclization in the Absence of Strong Acid". Synthesis . 1976 (3): 201–202. doi:10.1055/s-1976-23992.
  22. Chow, Y. L.; Mojelsky, T. W.; Magdzinski, L. J.; Tichy, M. (1985). "Chemistry of amido radicals: intramolecular hydrogen abstraction as related to amido radical configurations". Can. J. Chem. 63 (8): 2197–2202. Bibcode:1985CaJCh..63.2197C. doi: 10.1139/v85-361 .
  23. Nikishin, G. I.; Troyansky, E. I.; Lazareva, M. I. (1985). "Regioselective one-step γ-chlorination of alkanesulfonamides. Preponderance of 1,5-H migration from sulfonyl versus amide moiety in sulfonylamidyl radicals". Tetrahedron Lett. 26 (31): 3743–3744. doi:10.1016/S0040-4039(00)89238-2.
  24. Hernández, R.; Rivera, A.; Salazar, J. A.; Suárez, E. (1980). "Nitroamine radicals as intermediates in the functionalization of non-activated carbon atoms". J. Chem. Soc., Chem. Commun. (20): 958–959. doi:10.1039/C39800000958.
  25. 1 2 De Armas, P.; Francisco, C. G.; Hernández, R.; Salazar, J. A.; Suárez, E. (1988). "Steroidal N-nitroamines. Part 4. Intramolecular functionalization of N-nitroamine radicals: synthesis of 1,4-nitroimine compounds". J. Chem. Soc., Perkin Trans. 1 (12): 3255–3265. doi:10.1039/P19880003255.
  26. 1 2 Carrau, R.; Hernández, R.; Suárez, E.; Betancor, C. (1987). "Intramolecular functionalization of N-cyanamide radicals: synthesis of 1,4-and 1,5-N-cyanoepimino compounds". J. Chem. Soc., Perkin Trans. 1 : 937–943. doi:10.1039/P19870000937.
  27. 1 2 Francisco, C. G.; Herrera,A. J.; Suárez, E. (2003). "Intramolecular Hydrogen Abstraction Reaction Promoted by N-Radicals in Carbohydrates. Synthesis of Chiral 7-Oxa-2-azabicyclo[2.2.1]heptane and 8-Oxa-6-azabicyclo[3.2.1]octane Ring Systems". J. Org. Chem. 68 (3): 1012–1017. doi:10.1021/jo026314h. PMID   12558429.
  28. 1 2 Betancor, C.; Concepción, J. I.; Hernández, R.; Salazar, J. A.; Suárez, E. (1983). "Intramolecular functionalization of nonactivated carbons by amidylphosphate radicals. Synthesis of 1,4-epimine compounds". J. Org. Chem. 48 (23): 4430–4432. doi:10.1021/jo00171a066.
  29. 1 2 De Armas, P.; Carrau, R.; Concepción, J.I.; Francisco, C.G.; Hernández, R.; Suárez, E. (1985). "Synthesis of 1,4-epimine compounds. Iodosobenzene diacetate, an efficient reagent for neutral nitrogen radical generation". Tetrahedron Lett. 26 (20): 2493–2496. doi:10.1016/S0040-4039(00)94862-7.
  30. A., Wappes, Ethan; C., Fosu, Stacy; C., Chopko, Trevor; A., Nagib, David (16 August 2016). "Triiodide-Mediated δ-Amination of Secondary C−H Bonds". Angewandte Chemie International Edition. 55 (34): 9974–9978. doi:10.1002/anie.201604704. ISSN   1521-3773. PMC   5166987 . PMID   27384522.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Titouani, S. L.; Lavergne, J. P.; Viallefont,P.; Jacquier, R. (1980). "Nouvelles synthèses de l-amino-acids—I: Synthèse stèréospécifique de l-proline, cis(trans) méthyl-3(4) l-prolines". Tetrahedron . 36 (20–21): 2961–2965. doi:10.1016/0040-4020(80)88020-3.
  32. Sonnet, P. E.; Oliver, J. E. (1975). "Synthesis of insect trail pheromones: The isomeric 3-butyl-5-methyloctahydroindolizines". J. Heterocycl. Chem. 12 (2): 289–294. doi:10.1002/jhet.5570120215.
  33. Esposito, G.; Furstoss, R.; Waegell, B. (1971). "Synthese de la methyl-6, aza-6, bicyclo (3,2,1) octanone-4". Tetrahedron Lett. 12 (14): 899–902. doi:10.1016/S0040-4039(01)96584-0.
  34. Shibanuma, Y.; Okamoto, T. (1985). "Synthetic Approach to Diterpene Alkaloids : Construction of the Bridged Azabicyclic Ring System of Kobusine". Chem. Pharm. Bull. 33 (8): 3187–3194. doi:10.1248/cpb.33.3187.
  35. Narayanan, V. L.; Setescak, L. (1971). "Synthesis of 1-methyladamantano[1,2-b]pyrrolidine, a novel heterocyclic system". J. Org. Chem. 33 (26): 4127–4129. doi:10.1021/jo00825a026.
  36. Dupeyre, R. M.; Rassat, A. (1973). "Application de la reaction de Hofmann-Löffler-Freytag synthese de derives diaza-2,6 adamantane". Tetrahedron Lett. 14 (29): 2699–2701. doi:10.1016/S0040-4039(01)96116-7.
  37. Deshpande, R. P.; Nayak, U. R. (1979). Indian J. Chem. 17: 310.{{cite journal}}: Missing or empty |title= (help)
  38. Hora, J.; Sorm, F. (1968). "On steroids. CXIV. The synthesis of 18-dimethylamino-3β-hydroxy-5α-androstan-17-one and its 5β-isomer". ChemPlusChem . 33 (7): 2059–2065. doi:10.1135/cccc19682059.
  39. Van De Woude, G.; van Hove, L. (1973). "Amino Steroids – Conanine and Heteroconanine Derivatives". Bull. Soc. Chim. Belg. 82 (1–2): 49–62. doi:10.1002/bscb.19730820105.
  40. Van De Woude, G.; van Hove, L. (1975). "Amino Steroids – Preparation of 12-Oxygenated Conanine Derivatives (Partial Synthesis of Dihydroholarrhenine)". Bull. Soc. Chim. Belg. 84 (10): 911–922. doi:10.1002/bscb.19750841001.
  41. Van De Woude, G.; Biesemans, M.; van Hove, L. (1980). "Amino steroids – functionalization of position 20 from position 18 in a pregnane system through a Hofmann-Löffler process. predominant formation of 5α-heteroconan-3β-ol". Bull. Soc. Chim. Belg. 89 (11): 993–1000. doi:10.1002/bscb.19800891109.
  42. Togo, H.; Katohgi, M.; Yokoyama, M. (1998). "Direct Preparation of Saccharin Skeletons from N-Methyl(o-methyl)arenesulfonamides with (Diacetoxyiodo)arenes". Synlett . 1998 (2): 131–132. doi:10.1055/s-1998-1615.
  43. Katohgi, M.; Togo, H.; Yamaguchi, K.; Yokoyama, M. (1999). "New synthetic method to 1,2-benzisothiazoline-3-one- 1,1-dioxides and 1,2-benzisothiazoline-3-one-1-oxides from N-alkyl(o-methyl) arenesulfonamides". Tetrahedron . 55 (52): 14885–14900. doi:10.1016/S0040-4020(99)00974-6.
  44. Togo, H.; Hoshina, Y.; Muraki, T.; Nakayama, H.; Yokoyama, M. (1998). "Study on Radical Amidation onto Aromatic Rings with (Diacyloxyiodo)arenes". J. Org. Chem. 63 (15): 5193–5200. doi:10.1021/jo980450y.
  45. Togo, H.; Harada, Y.; Yokoyama, M. (2000). "Preparation of 3,4-Dihydro-2,1-benzothiazine 2,2-Dioxide Skeleton from N-Methyl 2-(Aryl)ethanesulfonamides with (Diacetoxyiodo)arenes". J. Org. Chem. 65 (3): 926–929. doi:10.1021/jo991419e.
  46. Dorta, R. L.; Francisco, C. G.; Suárez, E. (1989). "Hypervalent organoiodine reagents in the transannular functionalisation of medium-sized lactams: synthesis of 1-azabicyclo compounds". Chem. Commun. (16): 1168–1169. doi:10.1039/C39890001168.
  47. Hernández, R.; Medina, M.C; Salazar, J.A; Suárez, E.; Prangé, T. (1987). "Intramolecular functionalization of amides leading to lactams". Tetrahedron Lett. 28 (22): 2533–2536. doi:10.1016/S0040-4039(00)95460-1.
  48. Baran, P. S.; Chen, K.; Richter, J. M. (2008). "1,3-Diol Synthesis via Controlled, Radical-Mediated C−H Functionalization". J. Am. Chem. Soc. 130 (23): 7247–7249. Bibcode:2008JAChS.130.7247C. doi:10.1021/ja802491q. PMID   18481847.
  49. Wappes, Ethan A.; Nakafuku, Kohki M.; Nagib, David A. (2 August 2017). "Directed β C–H Amination of Alcohols via Radical Relay Chaperones". Journal of the American Chemical Society. 139 (30): 10204–10207. Bibcode:2017JAChS.13910204W. doi:10.1021/jacs.7b05214. ISSN   0002-7863. PMC   5940001 . PMID   28741940.
  50. Stateman, Leah M.; Wappes, Ethan A.; Nakafuku, Kohki M.; Edwards, Kara M.; Nagib, David A. (27 February 2019). "Catalytic β C–H amination via an imidate radical relay". Chemical Science. 10 (9): 2693–2699. doi:10.1039/C8SC05685D. ISSN   2041-6539. PMC   6419930 . PMID   30996986.
  51. Nakafuku, Kohki M.; Zhang, Zuxiao; Wappes, Ethan A.; Stateman, Leah M.; Chen, Andrew D.; Nagib, David A. (22 June 2020). "Enantioselective radical C–H amination for the synthesis of β-amino alcohols". Nature Chemistry. 12 (8): 697–704. Bibcode:2020NatCh..12..697N. doi:10.1038/s41557-020-0482-8. ISSN   1755-4349. PMC   7390680 . PMID   32572164. S2CID   219976955.