Étard reaction

Last updated

Contents

Étard reaction
Named after Alexandre Léon Étard
Reaction type Organic redox reaction
Identifiers
Organic Chemistry Portal étard-reaction

The Étard reaction is a chemical reaction that involves the direct oxidation of an aromatic or heterocyclic bound methyl group to an aldehyde using chromyl chloride. [1] [2] [3] For example, toluene can be oxidized to benzaldehyde.

It is named for the French chemist Alexandre Léon Étard (5 January 1852, Alençon – 1 May 1910).

Reaction mechanism

The reaction mechanism proceeds via an ene reaction with chromyl chloride, forming the precipitated Étard complex. The Étard complex is then decomposed by a [2,3] sigmatropic rearrangement under reducing conditions to prevent further oxidation to a carboxylic acid. Reducing conditions for the decomposition of the Étard complex are provided by saturated aqueous sodium sulphite. Typical solvents for the reaction include carbon disulfide, dichloromethane, [4] chloroform, and carbon tetrachloride, with carbon tetrachloride being the most common. To obtain a highly purified aldehyde product, the Étard complex precipitate is often purified before decomposition in order to prevent reaction with any unreacted reagent. The reaction is normally carried out for a few days to several weeks and the yields are high. [5] [6]

The Etard reaction Etard rxn.svg
The Etard reaction

Limitations

The Étard reaction is most commonly used as a relatively easy method of converting toluene into benzaldehyde. Obtaining specific aldehyde products from reagents other than toluene tends to be difficult due to rearrangements. For example, n-propylbenzene is oxidized to propiophenone, benzyl methyl ketone, and several chlorinated products, with benzyl methyl ketone being the major product. [7] [8] Another example arises from the Étard reaction of trans-decalin which results in a mixture of trans-9-decalol, spiro [4.5]decan-6-one, trans-1-decalone, cis-1-decalone, 9,10-octal-1-one, and 1-tetralone. [9]

Other oxidation reagents like potassium permanganate or potassium dichromate oxidize to the more stable carboxylic acids.

Uses

Oxidation of toluene to benzaldehyde is quite a useful conversion. Benzaldehyde is routinely used for its almond flavor. The aldehyde is comparatively reactive and readily participates in aldol condensations. Benzaldehyde can serve as a precursor for various compounds, including dyes, perfumes, and pharmaceuticals. For example, the first step in the synthesis of ephedrine is condensation of benzaldehyde with nitroethane [ citation needed ]. Additionally, benzaldehyde is instrumental in the synthesis of phentermine. [10] Unlike other oxidising agents (like KMnO4 or CrO3 etc.), chromyl chloride does not oxidise aldehyde to carboxylic acid.

Related Research Articles

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

<span class="mw-page-title-main">Enamine</span> Class of chemical compounds

An enamine is an unsaturated compound derived by the condensation of an aldehyde or ketone with a secondary amine. Enamines are versatile intermediates.

<span class="mw-page-title-main">Protecting group</span> Group of atoms introduced into a compound to prevent subsequent reactions

A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction. It plays an important role in multistep organic synthesis.

<span class="mw-page-title-main">Benzyl group</span> Chemical group (–CH₂–C₆H₅)

In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure R−CH2−C6H5. Benzyl features a benzene ring attached to a methylene group.

<span class="mw-page-title-main">Pyridinium chlorochromate</span> Chemical compound

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

<span class="mw-page-title-main">Chiral auxiliary</span> Stereogenic group placed on a molecule to encourage stereoselectivity in reactions

In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

Calcium hypochlorite is an inorganic compound with chemical formula Ca(ClO)2, also written as Ca(OCl)2. It is a white solid, although commercial samples appear yellow. It strongly smells of chlorine, owing to its slow decomposition in moist air. This compound is relatively stable as a solid and solution and has greater available chlorine than sodium hypochlorite. "Pure" samples have 99.2% active chlorine. Given common industrial purity, an active chlorine content of 65-70% is typical. It is the main active ingredient of commercial products called bleaching powder, used for water treatment and as a bleaching agent.

The Corey–Kim oxidation is an oxidation reaction used to synthesize aldehydes and ketones from primary and secondary alcohols. It is named for American chemist and Nobel Laureate Elias James Corey and Korean-American chemist Choung Un Kim.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

Ruthenium tetroxide is the inorganic compound with the formula RuO4. It is a yellow volatile solid that melts near room temperature. It has the odor of ozone. Samples are typically black due to impurities. The analogous OsO4 is more widely used and better known. It is also the anhydride of hyperruthenic acid (H2RuO5). One of the few solvents in which RuO4 forms stable solutions is CCl4.

<span class="mw-page-title-main">Chromyl chloride</span> Chemical compound

Chromyl chloride is an inorganic compound with the formula CrO2Cl2. It is a reddish brown compound that is a volatile liquid at room temperature, which is unusual for transition metal compounds. It is the dichloride of chromic acid.

<span class="mw-page-title-main">Sarett oxidation</span> Organic reaction

The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine. Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. Use of the original Sarett oxidation has become largely antiquated however, in favor of other modified oxidation techniques. The unadulterated reaction is still occasionally used in teaching settings and in small scale laboratory research.

<span class="mw-page-title-main">Cornforth reagent</span> Chemical compound

The Cornforth reagent (pyridinium dichromate or PDC) is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays.

<span class="mw-page-title-main">Ojima lactam</span> Chemical compound

The Ojima lactam is an organic compound of some importance in the commercial production of Taxol. This lactam was first synthesized by Iwao Ojima. The organic synthesis is an illustration of asymmetric synthesis via a chiral auxiliary.

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

Selenoxide elimination is a method for the chemical synthesis of alkenes from selenoxides. It is most commonly used to synthesize α,β-unsaturated carbonyl compounds from the corresponding saturated analogues. It is mechanistically related to the Cope reaction.

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols, depending on the strength of the reducing agent. Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H.

The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. The typical reaction conditions used today were developed by G. A. Kraus. H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes. There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost.

Jiro Tsuji was a Japanese chemist, notable for his discovery of organometallic reactions, including the Tsuji-Trost reaction, the Tsuji-Wilkinson decarbonylation, and the Tsuji-Wacker reaction.

References

  1. Étard, A. (1880). "Sur la synthèse desaldéhydes aromatiques; essence de cumin" [On the synthesis of aromatic aldehydes ; essence of cumin]. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (in French). 90: 534. Archived from the original on 1 March 2012.
  2. Étard, A. (1881). "Recherches sur le rôle oxydant de l'acide chlorochromique". Annales de Chimie et de Physique (in French). 22: 218–286. Archived from the original on 1 March 2012.
  3. Hartford, W. H. & Darrin, M. (1958). "The Chemistry Of Chromyl Compounds". Chemical Reviews . 58: 1–61. doi:10.1021/cr50019a001.
  4. F. Freeman (2004). "Chromyl Chloride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc177. ISBN   0471936235.
  5. Necsoiu, I.; Balaban, A. T.; Pascaru, I.; Sliam, E.; Elian, M.; Nenitzescu, C. D. (1963). "The mechanism of the Étard reaction". Tetrahedron. 19 (7): 1133–1142. doi:10.1016/s0040-4020(01)98572-2.
  6. Wheeler, Owen H. (1958). "Étard Reaction: I. Its Scope and Limitation with Substituted Toluenes". Canadian Journal of Chemistry. 36 (4): 667–670. doi: 10.1139/v58-093 .
  7. Renţea, C. N.; Necşoiu, I.; Renţes, M.; Ghenciulescu, A. & Nenitzescu, C. D. (1966). "Étard reaction—III: Oxidation of N-propylbenzene and methylcyclohexane with chromyl chloride". Tetrahedron. 22 (10): 3501–3513. doi:10.1016/s0040-4020(01)92538-4.
  8. Wiberg, K. B.; Marshall, B. & Foster, G. (1962). "Some observations on the Étard reaction". Tetrahedron Letters. 3 (8): 345–348. doi:10.1016/s0040-4039(00)70878-1.
  9. Renţea, C. N.; Renţea, M.; Necşoiu, I. & Nenitzescu, C. D. (1968). "Étard reaction—VI: Oxidation of cis and trans-decaline with chromyl chloride". Tetrahedron. 24 (13): 4667–4676. doi:10.1016/s0040-4020(01)98663-6.
  10. Vardanyan, Ruben S. & Hruby, Victor J. (2006). Synthesis of Essential Drugs (first ed.). Amsterdam: Elsevier Science. ISBN   978-0-444-52166-8.