# Timeline of temperature and pressure measurement technology

Last updated

Timeline of temperature and pressure measurement technology . A history of temperature measurement and pressure measurement technology.

## Timeline

### 1500s

• 1592–1593 — Galileo Galilei builds a device showing variation of hotness known as the thermoscope using the contraction of air to draw water up a tube. [1]

### 1700s

• 1701 — Newton publishes a method of determining the rate of heat loss of a body and introduces a scale, which had 0 degrees represent the freezing point of water, and 12 degrees for human body temperature.
• 1701 — Ole Christensen Rømer made one of the first practical thermometers. As a temperature indicator it used red wine. (Rømer scale), The temperature scale used for his thermometer had 0 representing the temperature of a salt and ice mixture (at about 259 s).
• 1709 — Daniel Gabriel Fahrenheit constructed alcohol thermometers which were reproducible (i.e. two would give the same temperature)
• 1714 — Daniel Gabriel Fahrenheit invents the mercury-in-glass thermometer giving much greater precision (4 x that of Rømer). Using Rømer's zero point and an upper point of blood temperature, he adjusted the scale so the melting point of ice was 32 and the upper point 96, meaning that the difference of 64 could be got by dividing the intervals into 2 repeatedly. [3]
• 1731 — René Antoine Ferchault de Réaumur produced a scale in which 0 represented the freezing point of water and 80 represented the boiling point. This was chosen as his alcohol mixture expanded 80 parts per thousand. He did not consider pressure. [4]
• 1738 — Daniel Bernoulli asserted in Hydrodynamica the principle that as the speed of a moving fluid increases, the pressure within the fluid decreases. (Kinetic theory)
• 1742 — Anders Celsiusproposed a temperature scale in which 100 represented the temperature of melting ice and 0 represented the boiling point of water at a particular pressure. [4]
• 1743 — Jean-Pierre Christin had worked independently of Celsius and developed a scale where zero represented the melting point of ice and 100 represented the boiling point but did not specify a pressure. [4]
• 1744 — Carl Linnaeus suggested reversing the temperature scale of Anders Celsius so that 0 represented the freezing point of water and 100 represented the boiling point.
• 1782 — James Six invents the Maximum minimum thermometer

## Related Research Articles

Anders Celsius was a Swedish astronomer, physicist and mathematician. He was professor of astronomy at Uppsala University from 1730 to 1744, but traveled from 1732 to 1735 visiting notable observatories in Germany, Italy and France. He founded the Uppsala Astronomical Observatory in 1741, and in 1742 proposed the Centigrade temperature scale which was later renamed Celsius in his honor.

Daniel Gabriel Fahrenheit FRS was a physicist, inventor, and scientific instrument maker. Fahrenheit was born in Danzig (Gdańsk), then a predominantly German-speaking city in the Pomeranian Voivodeship of the Polish–Lithuanian Commonwealth. He later moved to the Dutch Republic at age 15, where he spent the rest of his life (1701–1736) and was one of the notable figures in the Golden Age of Dutch science and technology.

The Fahrenheit scale is a temperature scale based on one proposed in 1724 by the physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit as the unit. Several accounts of how he originally defined his scale exist, but the original paper suggests the lower defining point, 0 °F, was established as the freezing temperature of a solution of brine made from a mixture of water, ice, and ammonium chloride. The other limit established was his best estimate of the average human body temperature, originally set at 90 °F, then 96°F. However, he noted a middle point of 32 °F, to be set to the temperature of ice water.

The Rankine scale is an absolute scale of thermodynamic temperature named after the Glasgow University engineer and physicist Macquorn Rankine, who proposed it in 1859. Just like the Kelvin scale, which was first proposed in 1848, zero on the Rankine scales is absolute zero, but a temperature difference of one Rankine degree is defined as equal to one Fahrenheit degree, rather than the Celsius degree used on the Kelvin scale. Thus, a temperature of 0 K is equal to 0 °R, and a temperature of −458.67 °F is equal to 1 °R.

A thermometer is a device that measures temperature or a temperature gradient. A thermometer has two important elements: (1) a temperature sensor in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value. Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.

Thermodynamic temperature is the measure of absolute temperature and is one of the principal parameters of thermodynamics. A thermodynamic temperature reading of zero denotes the point at which the fundamental physical property that imbues matter with a temperature, transferable kinetic energy due to atomic motion, begins. In science, thermodynamic temperature is measured on the Kelvin scale and the unit of measure is the kelvin. For comparison, a temperature of 295 K is a comfortable one, equal to 21.85 °C and 71.33 °F.

The following is a timeline of low-temperature technology and cryogenic technology. It also lists important milestones in thermometry, thermodynamics, statistical physics and calorimetry, that were crucial in development of low temperature systems.

The mercury-in-glass or mercury thermometer was invented by physicist Daniel Gabriel Fahrenheit in Amsterdam (1714). It consists of a bulb containing mercury attached to a glass tube of narrow diameter; the volume of mercury in the tube is much less than the volume in the bulb. The volume of mercury changes slightly with temperature; the small change in volume drives the narrow mercury column a relatively long way up the tube. The space above the mercury may be filled with nitrogen gas or it may be at less than atmospheric pressure, a partial vacuum.

The Rømer scale, also known as Romer or Roemer, is a temperature scale named after the Danish astronomer Ole Christensen Rømer, who proposed it in 1701. It is based on the freezing point of pure water being 7.5 degrees and the boiling point of water as 60 degrees.

The Delisle scale (°D) is a temperature scale invented in 1732 by the French astronomer Joseph-Nicolas Delisle (1688–1768). Delisle was the author of Mémoires pour servir à l'histoire et aux progrès de l'Astronomie, de la Géographie et de la Physique (1738).

The Newton scale is a temperature scale devised by Isaac Newton in 1701. He called his device a "thermometer", but he did not use the term "temperature", speaking of "degrees of heat" instead. Newton's publication represents the first attempt to introduce an objective way of measuring temperature . Newton likely developed his scale for practical use rather than for a theoretical interest in thermodynamics; he had been appointed Warden of the Mint in 1695, and Master of the Mint in 1699, and his interest in the melting points of metals are likely inspired by his duties in connection with the Royal Mint.

The International Temperature Scale of 1990 (ITS-90) published by the Consultative Committee for Thermometry (CCT) of the International Committee for Weights and Measures (CIPM) is an equipment calibration standard for making measurements on the Kelvin and Celsius temperature scales. ITS-90 is an approximation of the thermodynamic temperature scale that facilitates the comparability and compatibility of temperature measurements internationally. It specifies fourteen calibration points ranging from 0.65±0 K to 1357.77±0 K and is subdivided into multiple temperature ranges which overlap in some instances. ITS-90 is the latest of a series of International Temperature Scales adopted by CIPM since 1927. Adopted at the 1989 General Conference on Weights and Measures, it supersedes the International Practical Temperature Scale of 1968 and the 1976 "Provisional 0.5 K to 30 K Temperature Scale". CCT has also adopted a mise en pratique in 2011. The lowest temperature covered by ITS-90 is 0.65 K. In 2000, the temperature scale was extended further, to 0.9 mK, by the adoption of a supplemental scale, known as the Provisional Low Temperature Scale of 2000 (PLTS-2000).

Temperature measurement describes the process of measuring a current local temperature for immediate or later evaluation. Datasets consisting of repeated standardized measurements can be used to assess temperature trends.

A medical thermometer is used for measuring human or animal body temperature. The tip of the thermometer is inserted into the mouth under the tongue, under the armpit, into the rectum via the anus, into the ear, or on the forehead.

A thermoscope is a device that shows changes in temperature. A typical design is a tube in which a liquid rises and falls as the temperature changes. The modern thermometer gradually evolved from it with the addition of a scale in the early 17th century and standardisation through the 17th and 18th centuries.

Meteorological instruments or weather instruments are the equipment used to find the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much laboratory equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

The degree Celsius is a unit of temperature on the Celsius scale, a temperature scale originally known as the centigrade scale. The degree Celsius can refer to a specific temperature on the Celsius scale or a unit to indicate a difference or range between two temperatures. It is named after the Swedish astronomer Anders Celsius (1701–1744), who developed a similar temperature scale. Before being renamed to honor Anders Celsius in 1948, the unit was called centigrade, from the Latin centum, which means 100, and gradus, which means steps.

Scale of temperature is a methodology of calibrating the physical quantity temperature in metrology. Empirical scales measure temperature in relation to convenient and stable parameters, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles, using the lowest possible temperature as the zero point and selecting a convenient incremental unit.

Jean-Pierre Christin was a French physicist, mathematician, astronomer and musician. His proposal in 1743 to reverse the Celsius thermometer scale was widely accepted and is still in use today.

## References

1. Vincenzo Viviani (1654) Racconto istorico della vita del Sig.r Galileo Galilei
2. R. P. Benedict (1984) Fundamentals of Temperature, Pressure, and Flow Measurements, 3rd ed., ISBN   0-471-89383-8, p. 4
3. Henry Carrington Bolton (1800): Evolution of the thermometer 1592–1743. The Chemical pub. co., Easton, Pennsylvania. pp. 60-79.
4. Henry Carrington Bolton (1800): Evolution of the thermometer 1592–1743. The Chemical pub. co., Easton, Pennsylvania. pp. 79-87.
5. Louis Figuier; Émile Gautier (1867). L'Année scientifique et industrielle. L. Hachette et cie. pp.  485–486.
6. Ronalds, B.F. (2016). Sir Francis Ronalds: Father of the Electric Telegraph. London: Imperial College Press. ISBN   978-1-78326-917-4.
7. Ronalds, B.F. (2016). "The Beginnings of Continuous Scientific Recording using Photography: Sir Francis Ronalds' Contribution". European Society for the History of Photography. Retrieved 2 June 2016.