Resistance thermometer

Last updated

Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature. Many RTD elements consist of a length of fine wire wrapped around a heat-resistant ceramic or glass core but other constructions are also used. The RTD wire is a pure material, typically platinum (Pt), nickel (Ni), or copper (Cu). The material has an accurate resistance/temperature relationship which is used to provide an indication of temperature. As RTD elements are fragile, they are often housed in protective probes.

Contents

RTDs, which have higher accuracy and repeatability, [lower-alpha 1] are slowly replacing thermocouples in industrial applications below 600 °C. [1]

Resistance/temperature relationship of metals

SPRT glass capsule - RTD SPRT Glass Capsule - RTD.jpg
SPRT glass capsule – RTD

Common RTD sensing elements for biomedical application constructed of platinum (Pt), nickel (Ni), or copper (Cu) have a repeatable, [lower-alpha 2] resistance versus temperature relationship (R vs T) and operating temperature range. The R vs T relationship is defined as the amount of resistance change of the sensor per degree of temperature change. [1] The relative change in resistance (temperature coefficient of resistance) varies only slightly over the useful range of the sensor.[ citation needed ]

Platinum was proposed by Sir William Siemens as an element for a resistance temperature detector at the Bakerian lecture in 1871: [2] it is a noble metal and has the most stable resistance–temperature relationship over the largest temperature range. Nickel elements have a limited temperature range because the temperature coefficient of resistance changes at temperatures over 300 °C (572 °F). Copper has a very linear resistance–temperature relationship; however, copper oxidizes at moderate temperatures and cannot be used over 150 °C (302 °F).[ citation needed ]

The significant characteristic of metals used as resistive elements is the linear approximation of the resistance versus temperature relationship between 0 and 100 °C. This temperature coefficient of resistance is denoted by α and is usually given in units of Ω/(Ω·°C):[ citation needed ]

where

is the resistance of the sensor at 0 °C,
is the resistance of the sensor at 100 °C.

Pure platinum has α = 0.003925 Ω/(Ω·°C) in the 0 to 100 °C range and is used in the construction of laboratory-grade RTDs. [ citation needed ] Conversely, two widely recognized standards for industrial RTDs IEC 60751 and ASTM E-1137 specify α = 0.00385 Ω/(Ω·°C). Before these standards were widely adopted, several different α values were used. It is still possible to find older probes that are made with platinum that have α = 0.003916 Ω/(Ω·°C) and 0.003902 Ω/(Ω·°C).[ citation needed ]

These different α values for platinum are achieved by doping – carefully introducing impurities, which become embedded in the lattice structure of the platinum and result in a different R vs. T curve and hence α value.[ citation needed ]

Calibration

To characterize the R vs T relationship of any RTD over a temperature range that represents the planned range of use, calibration must be performed at temperatures other than 0 °C and 100 °C. This is necessary to meet calibration requirements. Although RTDs are considered to be linear in operation, it must be proven that they are accurate with regard to the temperatures with which they will actually be used (see details in Comparison calibration option). Two common calibration methods are the fixed-point method and the comparison method.[ citation needed ]

Fixed-point calibration
is used for the highest-accuracy calibrations by national metrology laboratories. [3] It uses the triple point, freezing point or melting point of pure substances such as water, zinc, tin, and argon to generate a known and repeatable temperature. These cells allow the user to reproduce actual conditions of the ITS-90 temperature scale. Fixed-point calibrations provide extremely accurate calibrations (within ±0.001 °C). A common fixed-point calibration method for industrial-grade probes is the ice bath. The equipment is inexpensive, easy to use, and can accommodate several sensors at once. The ice point is designated as a secondary standard because its accuracy is ±0.005 °C (±0.009 °F), compared to ±0.001 °C (±0.0018 °F) for primary fixed points.
Comparison calibrations
is commonly used with secondary standard platinum resistance thermometers and industrial RTDs. [4] The thermometers being calibrated are compared to calibrated thermometers by means of a bath whose temperature is uniformly stable. Unlike fixed-point calibrations, comparisons can be made at any temperature between −100 °C and 500 °C (−148 °F to 932 °F). This method might be more cost-effective, since several sensors can be calibrated simultaneously with automated equipment. These electrically heated and well-stirred baths use silicone oils and molten salts as the medium for the various calibration temperatures.

Element types

The three main categories of RTD sensors are thin-film, wire-wound, and coiled elements. While these types are the ones most widely used in industry, other more exotic shapes are used; for example, carbon resistors are used at ultra-low temperatures (−273 °C to −173 °C). [5]

Carbon resistor elements
are cheap and widely used. They have very reproducible results at low temperatures. They are the most reliable over extremely wide range of temperatures. They generally do not suffer from significant hysteresis or strain gauge effects.

Strain-free elements
use a wire coil minimally supported within a sealed housing filled with an inert gas. These sensors work up to 961.78 °C (1,763.20 °F) and are used in the SPRTs that define ITS-90.[ clarification needed ] They consist of platinum wire loosely coiled over a support structure, so the element is free to expand and contract with temperature. They are very susceptible to shock and vibration, as the loops of platinum can sway back and forth, causing deformation.
Thin-film PRT Thin Film PRT.png
Thin-film PRT

Thin-film elements
have a sensing element that is formed by depositing a very thin layer of resistive material, normally platinum, on a ceramic substrate (plating). This layer is usually just 10 to 100 ångströms (1 to 10 nanometers) thick. [6] This film is then coated with an epoxy or glass that helps protect the deposited film and also acts as a strain relief for the external lead wires. Disadvantages of this type are that they are not as stable as their wire-wound or coiled counterparts. They also can only be used over a limited temperature range due to the different expansion rates of the substrate and resistive deposited giving a "strain gauge" effect that can be seen in the resistive temperature coefficient. These elements work with temperatures to 300 °C (572 °F) without further packaging, but can operate up to 600 °C (1,112 °F) when suitably encapsulated in glass or ceramic. Special high-temperature RTD elements can be used up to 900 °C (1,652 °F) with the right encapsulation.
Wire-wound PRT Wire Wound PRT.png
Wire-wound PRT

Wire-wound elements
can have greater accuracy, especially for wide temperature ranges. The coil diameter provides a compromise between mechanical stability and allowing expansion of the wire to minimize strain and consequential drift. The sensing wire is wrapped around an insulating mandrel or core. The winding core can be round or flat, but must be an electrical insulator. The coefficient of thermal expansion of the winding core material is matched to the sensing wire to minimize any mechanical strain. This strain on the element wire will result in a thermal measurement error. The sensing wire is connected to a larger wire, usually referred to as the element lead or wire. This wire is selected to be compatible with the sensing wire, so that the combination does not generate an emf that would distort the thermal measurement. These elements work with temperatures to 660 °C.
Coil-element PRT Coil Element PRT.png
Coil-element PRT

Coiled elements
have largely replaced wire-wound elements in industry. This design has a wire coil that can expand freely over temperature, held in place by some mechanical support, which lets the coil keep its shape. This “strain free” design allows the sensing wire to expand and contract free of influence from other materials; in this respect it is similar to the SPRT, the primary standard upon which ITS-90 is based, while providing the durability necessary for industrial use. The basis of the sensing element is a small coil of platinum sensing wire. This coil resembles a filament in an incandescent light bulb. The housing or mandrel is a hard fired ceramic oxide tube with equally spaced bores that run transverse to the axes. The coil is inserted in the bores of the mandrel and then packed with a very finely ground ceramic powder. This permits the sensing wire to move, while still remaining in good thermal contact with the process. These elements work with temperatures to 850 °C.

The current international standard that specifies tolerance and the temperature-to-electrical resistance relationship for platinum resistance thermometers (PRTs) is IEC 60751:2008; ASTM E1137 is also used in the United States. By far the most common devices used in industry have a nominal resistance of 100 ohms at 0 °C and are called Pt100 sensors ("Pt" is the symbol for platinum, "100" for the resistance in ohms at 0 °C). It is also possible to get Pt1000 sensors, where 1000 is for the resistance in ohms at 0 °C. The sensitivity of a standard 100 Ω sensor is a nominal 0.385 Ω/°C. RTDs with a sensitivity of 0.375 and 0.392 Ω/°C, as well as a variety of others, are also available.

Function

Resistance thermometers are constructed in a number of forms and offer greater stability, accuracy and repeatability in some cases than thermocouples. While thermocouples use the Seebeck effect to generate a voltage, resistance thermometers use electrical resistance and require a power source to operate. The resistance ideally varies nearly linearly with temperature per the Callendar–Van Dusen equation.

The platinum detecting wire needs to be kept free of contamination to remain stable. A platinum wire or film is supported on a former in such a way that it gets minimal differential expansion or other strains from its former, yet is reasonably resistant to vibration. RTD assemblies made from iron or copper are also used in some applications. Commercial platinum grades exhibit a temperature coefficient of resistance 0.00385/°C (0.385%/°C) (European Fundamental Interval). [7] The sensor is usually made to have a resistance of 100 Ω at 0 °C. This is defined in BS EN 60751:1996 (taken from IEC 60751:1995). The American Fundamental Interval is 0.00392/°C, [8] based on using a purer grade of platinum than the European standard. The American standard is from the Scientific Apparatus Manufacturers Association (SAMA), who are no longer in this standards field. As a result, the "American standard" is hardly the standard even in the US.

Lead-wire resistance can also be a factor; adopting three- and four-wire, instead of two-wire, connections can eliminate connection-lead resistance effects from measurements (see below); three-wire connection is sufficient for most purposes and is an almost universal industrial practice. Four-wire connections are used for the most precise applications.

Advantages and limitations

The advantages of platinum resistance thermometers include:

Limitations:

RTDs in industrial applications are rarely used above 660 °C. At temperatures above 660 °C it becomes increasingly difficult to prevent the platinum from becoming contaminated by impurities from the metal sheath of the thermometer. This is why laboratory standard thermometers replace the metal sheath with a glass construction. At very low temperatures, say below −270 °C (3 K), because there are very few phonons, the resistance of an RTD is mainly determined by impurities and boundary scattering and thus basically independent of temperature. As a result, the sensitivity of the RTD is essentially zero and therefore not useful. [ citation needed ]

Compared to thermistors, platinum RTDs are less sensitive to small temperature changes and have a slower response time. However, thermistors have a smaller temperature range and stability.

RTDs vs thermocouples

The two most common ways of measuring temperatures for industrial applications are with resistance temperature detectors (RTDs) and thermocouples. The choice between them is typically determined by four factors.

Temperature
If process temperatures are between −200 and 500 °C (−328.0 and 932.0 °F), an industrial RTD is the preferred option. Thermocouples have a range of −180 to 2,320 °C (−292.0 to 4,208.0 °F), [9] so for temperatures above 500 °C (932 °F) it is the contact temperature measurement device commonly found in physics laboratories.
Response time
If the process requires a very fast response to temperature changes (fractions of a second as opposed to seconds), then a thermocouple is the best choice. Time response is measured by immersing the sensor in water moving at 1 m/s (3.3 ft/s) with a 63.2% step change.
Size
A standard RTD sheath is 3.175 to 6.35 mm (0.1250 to 0.2500 in) in diameter; sheath diameters for thermocouples can be less than 1.6 mm (0.063 in).
Accuracy and stability requirements
If a tolerance of 2 °C is acceptable and the highest level of repeatability is not required, a thermocouple will serve. RTDs are capable of higher accuracy and can maintain stability for many years, while thermocouples can drift within the first few hours of use.

Construction

Rtdconstruction.gif

These elements nearly always require insulated leads attached. PVC, silicone rubber or PTFE insulators are used at temperatures below about 250 °C. Above this, glass fibre or ceramic are used. The measuring point, and usually most of the leads, require a housing or protective sleeve, often made of a metal alloy that is chemically inert to the process being monitored. Selecting and designing protection sheaths can require more care than the actual sensor, as the sheath must withstand chemical or physical attack and provide convenient attachment points.

The RTD construction design may be enhanced to handle shock and vibration by including compacted magnesium oxide (MgO) powder inside the sheath. MgO is used to isolate the conductors from the external sheath and from each other. MgO is used due to its dielectric constant, rounded grain structure, high-temperature capability, and its chemical inertness.

Wiring configurations

Two-wire configuration

Twowire.gif

The simplest resistance-thermometer configuration uses two wires. It is only used when high accuracy is not required, as the resistance of the connecting wires is added to that of the sensor, leading to errors of measurement. This configuration allows use of 100 meters of cable. This applies equally to balanced bridge and fixed bridge system.

For a balanced bridge usual setting is with R2 = R1, and R3 around the middle of the range of the RTD. So for example, if we are going to measure between 0 and 100 °C (32 and 212 °F), RTD resistance will range from 100 Ω to 138.5 Ω. We would choose R3 = 120 Ω. In that way we get a small measured voltage in the bridge.

Three-wire configuration

RTD 3Wire.svg

In order to minimize the effects of the lead resistances, a three-wire configuration can be used. The suggested setting for the configuration shown, is with R1 = R2, and R3 around the middle of the range of the RTD. Looking at the Wheatstone bridge circuit shown, the voltage drop on the lower left hand side is V_rtd + V_lead, and on the lower right hand side is V_R3 + V_lead, therefore the bridge voltage (V_b) is the difference, V_rtd V_R3. The voltage drop due to the lead resistance has been cancelled out. This always applies if R1=R2, and R1, R2 >> RTD, R3. R1 and R2 can serve the use of limiting the current through the RTD, for example for a PT100, limiting to 1 mA, and 5 V, would suggest a limiting resistance of approximately R1 = R2 = 5/0.001 = 5,000 Ohms.

Four-wire configuration

4wire2.svg

The four-wire resistance configuration increases the accuracy of measurement of resistance. Four-terminal sensing eliminates voltage drop in the measuring leads as a contribution to error. To increase accuracy further, any residual thermoelectric voltages generated by different wire types or screwed connections are eliminated by reversal of the direction of the 1 mA current and the leads to the DVM (digital voltmeter). The thermoelectric voltages will be produced in one direction only. By averaging the reversed measurements, the thermoelectric error voltages are cancelled out.[ citation needed ]

Classifications of RTDs

The highest-accuracy of all PRTs are the Ultra Precise Platinum Resistance Thermometers (UPRTs). This accuracy is achieved at the expense of durability and cost. The UPRT elements are wound from reference-grade platinum wire. Internal lead wires are usually made from platinum, while internal supports are made from quartz or fused silica. The sheaths are usually made from quartz or sometimes Inconel, depending on temperature range. Larger-diameter platinum wire is used, which drives up the cost and results in a lower resistance for the probe (typically 25.5 Ω). UPRTs have a wide temperature range (−200 °C to 1000 °C) and are approximately accurate to ±0.001 °C over the temperature range. UPRTs are only appropriate for laboratory use.

Another classification of laboratory PRTs is Standard Platinum Resistance Thermometers (Standard SPRTs). They are constructed like the UPRT, but the materials are more cost-effective. SPRTs commonly use reference-grade, high-purity smaller-diameter platinum wire, metal sheaths and ceramic type insulators. Internal lead wires are usually a nickel-based alloy. Standard PRTs are more limited in temperature range (−200 °C to 500 °C) and are approximately accurate to ±0.03 °C over the temperature range.

Industrial PRTs are designed to withstand industrial environments. They can be almost as durable as a thermocouple. Depending on the application, industrial PRTs can use thin-film or coil-wound elements. The internal lead wires can range from PTFE-insulated stranded nickel-plated copper to silver wire, depending on the sensor size and application. Sheath material is typically stainless steel; higher-temperature applications may demand Inconel. Other materials are used for specialized applications.

History

Contemporary to the Seebeck effect, the discovery that resistivity in metals is dependent on the temperature was announced in 1821 by Sir Humphry Davy. [10] The practical application of the tendency of electrical conductors to increase their electrical resistance with rising temperature was first described by Sir William Siemens at the Bakerian Lecture of 1871 before the Royal Society of Great Britain, suggesting platina as a suitable element. [10] The necessary methods of construction were established by Callendar, Griffiths, Holborn and Wein between 1885 and 1900.

The Space Shuttle made extensive use of platinum resistance thermometers. The only in-flight shutdown of a Space Shuttle Main Engine mission STS-51F was caused by multiple failures of RTDs which had become brittle and unreliable due to multiple heat-and-cool cycles. (The failures of the sensors falsely suggested that a fuel pump was critically overheating, and the engine was automatically shut down.) Following the engine failure incident, the RTDs were replaced with thermocouples. [11]

In 1871 Carl Wilhelm Siemens invented the Platinum Resistance Temperature Detector and presented a three-term interpolation formula. Siemens’ RTD rapidly fell out of favour due to the instability of the temperature reading. Hugh Longbourne Callendar developed the first commercially successful platinum RTD in 1885.

A 1971 paper by Eriksson, Keuther, and Glatzel identified six noble metal alloys (63Pt37Rh, 37Pd63Rh, 26Pt74Ir, 10Pd90Ir, 34Pt66Au, 14Pd86Au) with approximately linear resistance temperature characteristics. The alloy 63Pt37Rh is similar to the readily available 70Pt30Rh alloy wire used in thermocouples. [12]

Standard resistance thermometer data

Temperature sensors are usually supplied with thin-film elements. The resistance elements are rated in accordance with BS EN 60751:2008 as:

Tolerance classValid range
F 0.3−50 to +500 °C
F 0.15−30 to +300 °C
F 0.10 to +150 °C

Resistance-thermometer elements functioning up to 1000 °C can be supplied. The relation between temperature and resistance is given by the Callendar–Van Dusen equation:

Here is the resistance at temperature T, is the resistance at 0 °C, and the constants (for an α = 0.00385 platinum RTD) are:

Since the B and C coefficients are relatively small, the resistance changes almost linearly with the temperature.

For positive temperature, solution of the quadratic equation yields the following relationship between temperature and resistance:

Then for a four-wire configuration with a 1 mA precision current source [13] the relationship between temperature and measured voltage is

Temperature
in °C
Resistance in Ω
ITS-90 Pt100 [14]
Pt100
Typ: 404
Pt1000
Typ: 501
PTC
Typ: 201
NTC
Typ: 101
NTC
Typ: 102
NTC
Typ: 103
NTC
Typ: 104
NTC
Typ: 105
−5079.90119280.31803.11032
−4581.92508982.29822.91084
−4083.94564284.27842.7113550475
−3585.96291386.25862.5119136405
−3087.97696388.22882.2124626550
−2589.98784490.19901.913062608319560
−2091.99560292.16921.613661941414560
−1594.00027694.12941.214301459610943
−1096.00189396.09960.91493110668299
−598.00047098.04980.41561313898466
099.996012100.001000.01628238686536
5101.988430101.951019.51700182995078
10103.977803103.901039.01771141303986
15105.964137105.851058.5184710998
20107.947437107.791077.919228618
25109.927708109.731097.32000680015000
30111.904954111.671116.72080540111933
35113.879179113.611136.1216243179522
40115.850387115.541155.4224434717657
45117.818581117.471174.723306194
50119.783766119.401194.024155039
55121.745943121.321213.22505429927475
60123.705116123.241232.42595375622590
65125.661289125.161251.6268918668
70127.614463127.071270.7278215052
75129.564642128.981289.8288012932
80131.511828130.891308.9297710837
85133.456024132.801328.030799121
90135.397232134.701347.031807708
95137.335456136.601366.032856539
100139.270697138.501385.03390
105141.202958140.391403.9
110143.132242142.291422.9
150158.459633157.311573.1
200177.353177175.841758.4

See also

Notes

  1. Consistency of repeatitive measurement under influence of the surroundings over a long period of time
  2. Meaning that the same measurement remains unchanged for the same temperature under influence of the surroundings.

Related Research Articles

<span class="mw-page-title-main">Resistor</span> Passive electrical component providing electrical resistance

A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.

<span class="mw-page-title-main">Thermocouple</span> Electrical device for measuring temperature

A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.

<span class="mw-page-title-main">Thermistor</span> Type of resistor whose resistance varies with temperature

A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor.

<span class="mw-page-title-main">Thermometer</span> Device to measure temperature

A thermometer is a device that measures temperature or temperature gradient. A thermometer has two important elements: (1) a temperature sensor in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value. Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

<span class="mw-page-title-main">Multimeter</span> Electronic measuring instrument that combines several measurement functions in one unit

A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ammeter, and ohmmeter. Some feature the measurement of additional properties such as temperature and capacitance.

<span class="mw-page-title-main">Calorimeter</span> Instrument for measuring heat

A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.

<span class="mw-page-title-main">Electrical resistance and conductance</span> Opposition to the passage of an electric current

The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm, while electrical conductance is measured in siemens (S).

<span class="mw-page-title-main">Potentiometer</span> Type of resistor, usually with three terminals

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat.

<span class="mw-page-title-main">Hygrometer</span> Instrument for measuring humidity

A hygrometer is an instrument which measures the humidity of air or some other gas: that is, how much water vapor it contains. Humidity measurement instruments usually rely on measurements of some other quantities such as temperature, pressure, mass and mechanical or electrical changes in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can lead to a measurement of humidity. Modern electronic devices use the temperature of condensation, or they sense changes in electrical capacitance or resistance to measure humidity differences. A crude hygrometer was invented by Leonardo da Vinci in 1480. Major leaps came forward during the 1600s; Francesco Folli invented a more practical version of the device, while Robert Hooke improved a number of meteorological devices including the hygrometer. A more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later, in the year 1783, Swiss physicist and Geologist Horace Bénédict de Saussure invented the first hygrometer using human hair to measure humidity.

<span class="mw-page-title-main">Voltage divider</span> Linear circuit that produces an output voltage that is a fraction of its input voltage

In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.

<span class="mw-page-title-main">Heating element</span> Device that converts electricity into heat

A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. Heat is generated by the passage of electric current through a resistor through a process known as Joule Heating. Heating elements are used in household appliances, industrial equipment, and scientific instruments enabling them to perform tasks such as cooking, warming, or maintaining specific temperatures higher than the ambient.

load cell converts a force such as tension, compression, pressure, or torque into a signal that can be measured and standardized. It is a force transducer. As the force applied to the load cell increases, the signal changes proportionally. The most common types of load cells are pneumatic, hydraulic, and strain gauge types for industrial applications. Typical non-electronic bathroom scales are a widespread example of a mechanical displacement indicator where the applied weight (force) is indicated by measuring the deflection of springs supporting the load platform, technically a "load cell".

The Callendar–Van Dusen equation is an equation that describes the relationship between resistance (R) and temperature (T) of platinum resistance thermometers (RTD).

A medical thermometer or clinical thermometer is a device used for measuring the body temperature of a human or other animal. The tip of the thermometer is inserted into the mouth under the tongue, under the armpit, into the rectum via the anus, into the ear, or on the forehead.

<span class="mw-page-title-main">Test probe</span>

A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.

<span class="mw-page-title-main">Pirani gauge</span>

The Pirani gauge is a robust thermal conductivity gauge used for the measurement of the pressures in vacuum systems. It was invented in 1906 by Marcello Pirani.

<span class="mw-page-title-main">Heat flux sensor</span> Sensor which measures heat transfer

A heat flux sensor is a transducer that generates an electrical signal proportional to the total heat rate applied to the surface of the sensor. The measured heat rate is divided by the surface area of the sensor to determine the heat flux.

There are a number of possible ways to measure thermal conductivity, each of them suitable for a limited range of materials, depending on the thermal properties and the medium temperature. Three classes of methods exist to measure the thermal conductivity of a sample: steady-state, time-domain, and frequency-domain methods.

A potentiometer is an instrument for measuring voltage or 'potential difference' by comparison of an unknown voltage with a known reference voltage. If a sensitive indicating instrument is used, very little current is drawn from the source of the unknown voltage. Since the reference voltage can be produced from an accurately calibrated voltage divider, a potentiometer can provide high precision in measurement. The method was described by Johann Christian Poggendorff around 1841 and became a standard laboratory measuring technique.

The Kelvin-Varley voltage divider, named after its inventors William Thomson, 1st Baron Kelvin and Cromwell Fleetwood Varley, is an electronic circuit used to generate an output voltage as a precision ratio of an input voltage, with several decades of resolution. In effect, the Kelvin–Varley divider is an electromechanical precision digital-to-analog converter.

References

  1. 1 2 Jones, Deric P. (2010), Sensor Technology Series: Biomedical Sensors, Momentum Press, ISBN   9781606500569 , retrieved September 18, 2009
  2. Siemens, William (1871). "On the Increase of Electrical Resistance in Conductors with Rise of Temperature, and Its Application to the Measure of Ordinary and Furnace Temperatures; Also on a Simple Method of Measuring Electrical Resistances". The Bakerian Lecture. Royal Society . Retrieved May 14, 2014.
  3. Strouse, G. F. (2008). "Standard Platinum Resistance Thermometer Calibrations from the Ar TP to the Ag FP" (PDF). Gaithersburg, MD: National Institute of Standards and Technology. NIST Special Publication 250-81.
  4. "RESISTANCE TEMPERATURE DETECTOR – RTD". www.punetechtrol.com. Retrieved November 4, 2023.
  5. Carbon Resistors (PDF), retrieved November 16, 2011
  6. RTD Element Types
  7. "Hand Held Thermometers | Charnwood Instruments". www.instrumentationservices.net. Archived from the original on March 5, 2009.
  8. "Temperature Coefficient of Resistance".
  9. "Omega Engineering | Shop for Sensing, Monitoring and Control Solutions with Technical Expertise" (PDF).
  10. 1 2 Hughes, Thomas A. (2002). Measurement and Control Basics, resources for measurement and control series. (3:e upplagan). Research Triangle Park, North Carlolina: The Instrumentation, Systems and Automation Society (ISA). pp. 173–175. ISBN   978-1556177644.
  11. Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, page 251
  12. L. J. Eriksson, F. W. Keuther, and J.J. Glatzel (1971). “A Linear Resistance Thermometer,” Proceedings of the Fifth Temperature Symposium, Washington, DC, 1971, pp. 989–995
  13. Precision Low Current Source , retrieved May 20, 2015
  14. Strouse, G. F. (2008). Standard Platinum Resistance Thermometer Calibrations from the Ar TP to the Ag FP. Gaithersburg, MD: National Institute of Standards and Technology.