# Wheatstone bridge

Last updated

A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. The primary benefit of the circuit is its ability to provide extremely accurate measurements (in contrast with something like a simple voltage divider). [1] Its operation is similar to the original potentiometer.

## Contents

The Wheatstone bridge was invented by Samuel Hunter Christie (sometimes spelled "Christy") in 1833 and improved and popularized by Sir Charles Wheatstone in 1843. One of the Wheatstone bridge's initial uses was for soil analysis and comparison. [2]

## Operation

In the figure, Rx is the fixed, yet unknown, resistance to be measured.

R1,R2, and R3 are resistors of known resistance and the resistance of R2 is adjustable. The resistance R2 is adjusted until the bridge is "balanced" and no current flows through the galvanometer Vg. At this point, the potential difference between the two midpoints (B and D) will be zero. Therefore the ratio of the two resistances in the known leg (R2/R1) is equal to the ratio of the two resistances in the unknown leg (Rx/R3). If the bridge is unbalanced, the direction of the current indicates whether R2 is too high or too low.

At the point of balance,

{\displaystyle {\begin{aligned}{\frac {R_{2}}{R_{1}}}&={\frac {R_{x}}{R_{3}}}\\[4pt]\Rightarrow R_{x}&={\frac {R_{2}}{R_{1}}}\cdot R_{3}\end{aligned}}}

Detecting zero current with a galvanometer can be done to extremely high precision. Therefore, if R1,R2, and R3 are known to high precision, then Rx can be measured to high precision. Very small changes in Rx disrupt the balance and are readily detected.

Alternatively, if R1,R2, and R3 are known, but R2 is not adjustable, the voltage difference across or current flow through the meter can be used to calculate the value of Rx, using Kirchhoff's circuit laws. This setup is frequently used in strain gauge and resistance thermometer measurements, as it is usually faster to read a voltage level off a meter than to adjust a resistance to zero the voltage.

## Derivation

### Quick derivation at balance

At the point of balance, both the voltage and the current between the two midpoints (B and D) are zero. Therefore, ${\displaystyle I_{1}=I_{2}}$, ${\displaystyle I_{3}=I_{x}}$, ${\displaystyle V_{D}=V_{B}}$.

Because of ${\displaystyle V_{D}=V_{B}}$, it stands ${\displaystyle V_{DC}=V_{BC}}$ and ${\displaystyle V_{AD}=V_{AB}}$.

Dividing the last two equations by members and using the above currents equalities, it derives:

{\displaystyle {\begin{aligned}{\frac {V_{DC}}{V_{AD}}}&={\frac {V_{BC}}{V_{AB}}}\\[4pt]\Rightarrow {\frac {I_{2}R_{2}}{I_{1}R_{1}}}&={\frac {I_{x}R_{x}}{I_{3}R_{3}}}\\[4pt]\Rightarrow R_{x}&={\frac {R_{2}}{R_{1}}}\cdot R_{3}\end{aligned}}}

### Full derivation using Kirchhoff's circuit laws

First, Kirchhoff's first law is used to find the currents in junctions B and D:

{\displaystyle {\begin{aligned}I_{3}-I_{x}+I_{G}&=0\\I_{1}-I_{2}-I_{G}&=0\end{aligned}}}

Then, Kirchhoff's second law is used for finding the voltage in the loops ABDA and BCDB:

{\displaystyle {\begin{aligned}(I_{3}\cdot R_{3})-(I_{G}\cdot R_{G})-(I_{1}\cdot R_{1})&=0\\(I_{x}\cdot R_{x})-(I_{2}\cdot R_{2})+(I_{G}\cdot R_{G})&=0\end{aligned}}}

When the bridge is balanced, then IG = 0, so the second set of equations can be rewritten as:

{\displaystyle {\begin{aligned}I_{3}\cdot R_{3}&=I_{1}\cdot R_{1}\quad {\text{(1)}}\\I_{x}\cdot R_{x}&=I_{2}\cdot R_{2}\quad {\text{(2)}}\end{aligned}}}

Then, equation (1) is divided by equation (2) and the resulting equation is rearranged, giving:

${\displaystyle R_{x}={{R_{2}\cdot I_{2}\cdot I_{3}\cdot R_{3}} \over {R_{1}\cdot I_{1}\cdot I_{x}}}}$

Due to I3 = Ix and I1 = I2 being proportional from Kirchhoff's First Law, I3I2/I1Ix cancels out of the above equation. The desired value of Rx is now known to be given as:

${\displaystyle R_{x}={{R_{3}\cdot R_{2}} \over {R_{1}}}}$

On the other hand, if the resistance of the galvanometer is high enough that IG is negligible, it is possible to compute Rx from the three other resistor values and the supply voltage (VS), or the supply voltage from all four resistor values. To do so, one has to work out the voltage from each potential divider and subtract one from the other. The equations for this are:

{\displaystyle {\begin{aligned}V_{G}&=\left({R_{2} \over {R_{1}+R_{2}}}-{R_{x} \over {R_{x}+R_{3}}}\right)V_{s}\\[6pt]R_{x}&={{R_{2}\cdot V_{s}-(R_{1}+R_{2})\cdot V_{G}} \over {R_{1}\cdot V_{s}+(R_{1}+R_{2})\cdot V_{G}}}R_{3}\end{aligned}}}

where VG is the voltage of node D relative to node B.

## Significance

The Wheatstone bridge illustrates the concept of a difference measurement, which can be extremely accurate. Variations on the Wheatstone bridge can be used to measure capacitance, inductance, impedance and other quantities, such as the amount of combustible gases in a sample, with an explosimeter. The Kelvin bridge was specially adapted from the Wheatstone bridge for measuring very low resistances. In many cases, the significance of measuring the unknown resistance is related to measuring the impact of some physical phenomenon (such as force, temperature, pressure, etc.) which thereby allows the use of Wheatstone bridge in measuring those elements indirectly.

The concept was extended to alternating current measurements by James Clerk Maxwell in 1865 and further improved as Blumlein bridge by Alan Blumlein in British Patent no. 323,037, 1928.

## Modifications of the fundamental bridge

The Wheatstone bridge is the fundamental bridge, but there are other modifications that can be made to measure various kinds of resistances when the fundamental Wheatstone bridge is not suitable. Some of the modifications are:

## Related Research Articles

A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor.

Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a test charge between the two points. In the International System of Units (SI), the derived unit for voltage is named volt.

In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship:

Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component or an electrical network is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participate in the series/parallel networks.

A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.

In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.

In electronics, a common collector amplifier is one of three basic single-stage bipolar junction transistor (BJT) amplifier topologies, typically used as a voltage buffer.

A current mirror is a circuit designed to copy a current through one active device by controlling the current in another active device of a circuit, keeping the output current constant regardless of loading. The current being "copied" can be, and sometimes is, a varying signal current. Conceptually, an ideal current mirror is simply an ideal inverting current amplifier that reverses the current direction as well. Or it can consist of a current-controlled current source (CCCS). The current mirror is used to provide bias currents and active loads to circuits. It can also be used to model a more realistic current source.

Kirchhoff's circuit laws are two equalities that deal with the current and potential difference in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of James Clerk Maxwell. Widely used in electrical engineering, they are also called Kirchhoff's rules or simply Kirchhoff's laws. These laws can be applied in time and frequency domains and form the basis for network analysis.

A bridge circuit is a topology of electrical circuitry in which two circuit branches are "bridged" by a third branch connected between the first two branches at some intermediate point along them. The bridge was originally developed for laboratory measurement purposes and one of the intermediate bridging points is often adjustable when so used. Bridge circuits now find many applications, both linear and non-linear, including in instrumentation, filtering and power conversion.

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage between "nodes" in an electrical circuit in terms of the branch currents.

Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, and is mostly applied to nonlinear electrical circuits . It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes the solution can be represented by a linear combination of sinusoids, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, and is most applicable to systems with feedback in which limit cycles occur.

In electronics, diode modelling refers to the mathematical models used to approximate the actual behaviour of real diodes to enable calculations and circuit analysis. A diode's I-V curve is nonlinear.

The telegrapher's equations are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory. The equations and their solutions are applicable from 0 Hz to frequencies at which the transmission line structure can support higher order non-TEM modes. The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. The resulting time domain equations are partial differential equations of both time and distance. In the frequency domain the independent variables are distance and either frequency, , or complex frequency, . The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors. The resulting frequency domain equations are ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.

A Kelvin bridge, also called a Kelvin double bridge and in some countries a Thomson bridge, is a measuring instrument used to measure unknown electrical resistors below 1 ohm. It is specifically designed to measure resistors that are constructed as four terminal resistors.

A potentiometer is an instrument for measuring voltage or 'potential difference' by comparison of an unknown voltage with a known reference voltage. If a sensitive indicating instrument is used, very little current is drawn from the source of the unknown voltage. Since the reference voltage can be produced from an accurately calibrated voltage divider, a potentiometer can provide high precision in measurement. The method was described by Johann Christian Poggendorff around 1841 and became a standard laboratory measuring technique.

In electronics, the Carey Foster bridge is a bridge circuit used to measure medium resistances, or to measure small differences between two large resistances. It was invented by Carey Foster as a variant on the Wheatstone bridge. He first described it in his 1872 paper "On a Modified Form of Wheatstone's Bridge, and Methods of Measuring Small Resistances".

In electronics, Anderson's bridge is a bridge circuit used to measure the self-inductance of the coil. It enables measurement of inductance by utilizing other circuit components like resistors and capacitors.

## References

1. "Circuits in Practice: The Wheatstone Bridge, What It Does, and Why It Matters", as discussed in this MIT ES.333 class video
2. "The Genesis of the Wheatstone Bridge" by Stig Ekelof discusses Christie's and Wheatstone's contributions, and why the bridge carries Wheatstone's name. Published in "Engineering Science and Education Journal", volume 10, no 1, February 2001, pages 37–40.