The earliest recorded systems of weights and measures originate in the 3rd or 4th millennium BC. [1] Even the very earliest civilizations needed measurement for purposes of agriculture, construction and trade. Early standard units might only have applied to a single community or small region, with every area developing its own standards for lengths, areas, volumes and masses. Often such systems were closely tied to one field of use, so that volume measures used, for example, for dry grains were unrelated to those for liquids, with neither bearing any particular relationship to units of length used for measuring cloth or land. With development of manufacturing technologies, and the growing importance of trade between communities and ultimately across the Earth, standardized weights and measures became critical. Starting in the 18th century, modernized, simplified and uniform systems of weights and measures were developed, with the fundamental units defined by ever more precise methods in the science of metrology. The discovery and application of electricity was one factor motivating the development of standardized internationally applicable units.
The comparison of the dimensions of buildings with the descriptions of contemporary writers is another source of information. An interesting example of this is the comparison of the dimensions of the Greek Parthenon with the description given by Plutarch from which a fairly accurate idea of the size of the Attic foot is obtained. Because of the comparative volume of artifacts and documentation, much more is known today about the state-sanctioned measures of large, advanced societies than about those of smaller societies or about the informal measures that often coexisted with official ones. In some cases, there are only plausible theories and different interpretations can be matched to the evidences.
It is possible to group official measurement systems for large societies into historical systems that are relatively stable over time, including: the Babylonian system, the Egyptian system, the Phileterian system of the Ptolemaic age, the Olympic system of Greece, the Roman system, the British system, and the metric system.
The earliest known uniform systems of weights and measures seem all to have been created at some time in the 4th and 3rd millennia BC among the ancient peoples of Egypt, Mesopotamia and the Indus Valley, and perhaps also Elam (in Iran) as well.
Early Babylonian and Egyptian records and the Hebrew Bible indicate that length was first measured with the forearm, hand, or finger and that time was measured by the periods of the sun, moon, and other heavenly bodies. When it was necessary to compare the capacities of containers such as gourds or clay or metal vessels, they were filled with plant seeds which were then counted to measure the volumes. When means for weighing were invented, seeds and stones served as standards. For instance, the carat, still used as a unit for gems, was derived from the carob seed.
Before the establishment of the decimal metric system in France during the French Revolution in the late 18th century, [2] many units of length were based on parts of the human body. [3] [4] The Nippur cubit was one of the oldest known units of length. The oldest known metal standard for length corresponds to this Sumerian unit and dates from 2650 BCE. [5] [6] This copper bar was discovered in Nippur, on the banks of the Euphrates, and is kept in the Istanbul Archaeological Museum. Archaeologists consider that this 51.85 centimetres long unit was the origin of the Roman foot. Indeed, the Egyptians divided the Sumerian cubit into 28 fingers and 16 of these fingers gave a Roman foot of 29.633 cm. [6] [4]
The grain was the earliest unit of mass and is the smallest unit in the apothecary, avoirdupois, Tower, and troy systems. The early unit was a grain of wheat or barleycorn used to weigh the precious metals silver and gold. Larger units preserved in stone standards were developed that were used as both units of mass and of monetary currency. The pound was derived from the mina (unit) used by ancient civilizations. A smaller unit was the shekel, and a larger unit was the talent. The magnitude of these units varied from place to place. The Babylonians and Sumerians had a system in which there were 60 shekels in a mina and 60 minas in a talent. The Roman talent consisted of 100 libra (pound) which were smaller in magnitude than the mina. The troy pound (~373.2 g) used in England and the United States for monetary purposes, like the Roman pound, was divided into 12 ounces, but the Roman uncia (ounce) was smaller. The carat is a unit for measuring gemstones that had its origin in the carob seed, which later was standardized at 1/144 ounce and then 0.2 gram.
Goods of commerce were originally traded by number or volume. When weighing of goods began, units of mass based on a volume of grain or water were developed. The diverse magnitudes of units having the same name, which still appear today in our dry and liquid measures, could have arisen from the various commodities traded. The larger avoirdupois pound for goods of commerce might have been based on volume of water which has a higher bulk density than grain.
The stone, quarter, hundredweight, and ton were larger units of mass used in Britain. Today only the stone continues in customary use for measuring personal body weight. The present stone is 14 pounds (~6.35 kg), but an earlier unit appears to have been 16 pounds (~7.25 kg). The other units were multiples of 2, 8, and 160 times the stone, or 28, 112, and 2240 pounds (~12.7 kg, 50.8 kg, 1016 kg), respectively. The hundredweight was approximately equal to two talents. The "long ton" is equal to 2240 pounds (1016.047 kg), the "short ton" is equal to 2000 pounds (907.18474 kg), and the tonne (or metric ton) (t) is equal to 1000 kg (or 1 megagram).
The division of the circle into 360 degrees and the day into hours, minutes, and seconds can be traced to the Babylonians who had a sexagesimal system of numbers. The 360 degrees may have been related to a year of 360 days. Many other systems of measurement divided the day differently—counting hours, decimal time, etc. Other calendars divided the year differently.
Decimal numbers are an essential part of the metric system, with only one base unit and multiples created on the decimal base, the figures remain the same. This simplifies calculations. Although the Indians used decimal numbers for mathematical computations, it was Simon Stevin who in 1585 first advocated the use of decimal numbers for everyday purposes in his booklet De Thiende (old Dutch for 'the tenth'). He also declared that it would only be a matter of time before decimal numbers were used for currencies and measurements. [7] His notation for decimal fractions was clumsy, but this was overcome with the introduction of the decimal point, generally attributed to Bartholomaeus Pitiscus who used this notation in his trigonometrical tables (1595). [8]
In 1670, Gabriel Mouton published a proposal that was in essence similar to John Wilkins' proposal for a universal measure, except that his base unit of length would have been 1/1000 of a minute of arc (about 1.852 m) of geographical latitude. He proposed calling this unit the virga. Rather than using different names for each unit of length, he proposed a series of names that had prefixes, rather like the prefixes found in SI. [9]
In 1790, Thomas Jefferson submitted a report to the United States Congress in which he proposed the adoption of a decimal system of coinage and of weights and measures. He proposed calling his base unit of length a "foot" which he suggested should be either 3⁄10 or 1⁄3 of the length of a pendulum that had a period of one second—that is 3⁄10 or 1⁄3 of the "standard" proposed by John Wilkins over a century previously. This would have equated to 11.755 English inches (29.8 cm) or 13.06 English inches (33.1 cm). Like Wilkins, the names that he proposed for multiples and subunits of his base units of measure were the names of units of measure that were in use at the time. [10] The great interest in geodesy during this era, and the measurement system ideas that developed, influenced how the continental US was surveyed and parceled. The story of how Jefferson's full vision for the new measurement system came close to displacing the Gunter chain and the traditional acre, but ended up not doing so, is explored in Andro Linklater's Measuring America. [11]
The metric system was first described in 1668 and officially adopted by France in 1799. Over the 19th and 20th centuries, it became the dominant system worldwide, although several countries, including the United States, China, and the United Kingdom continue to use their customary units. [12] Among the numerous customary systems, many have been adapted to become an integer multiple of a related metric unit: The Scandinavian mile is now defined as 10 km, the Chinese jin is now defined as 0.5 kg, and the Dutch ons is now defined as 100 g.
The imperial system of units, imperial system or imperial units is the system of units first defined in the British Weights and Measures Act 1824 and continued to be developed through a series of Weights and Measures Acts and amendments.
The metre is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second, where the second is defined by a hyperfine transition frequency of caesium.
Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared to a basic reference quantity of the same kind. The scope and application of measurement are dependent on the context and discipline. In natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International Vocabulary of Metrology (VIM) published by the International Bureau of Weights and Measures (BIPM). However, in other fields such as statistics as well as the social and behavioural sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.
The pound or pound-mass is a unit of mass used in both the British imperial and United States customary systems of measurement. Various definitions have been used; the most common today is the international avoirdupois pound, which is legally defined as exactly 0.45359237 kilograms, and which is divided into 16 avoirdupois ounces. The international standard symbol for the avoirdupois pound is lb; an alternative symbol is lbm, #, and ℔ or ″̶.
The International System of Units, internationally known by the abbreviation SI, is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI system is coordinated by the International Bureau of Weights and Measures which is abbreviated BIPM from French: Bureau international des poids et mesures.
The metric system is a system of measurement that standardizes a set of base units and a nomenclature for describing relatively large and small quantities via decimal-based multiplicative unit prefixes. Though the rules governing the metric system have changed over time, the modern definition, the International System of Units (SI), defines the metric prefixes and seven base units: metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and candela (cd).
Metric time is the measure of time intervals using the metric system. The modern SI system defines the second as the base unit of time, and forms multiples and submultiples with metric prefixes such as kiloseconds and milliseconds. Other units of time – minute, hour, and day – are accepted for use with SI, but are not part of it. Metric time is a measure of time intervals, while decimal time is a means of recording time of day.
Biblical and Talmudic units of measurement were used primarily by ancient Israelites and appear frequently within the Hebrew Bible as well as in later rabbinic writings, such as the Mishnah and Talmud. These units of measurement continue to be used in functions regulating Orthodox Jewish contemporary life, based on halacha. The specificity of some of the units used and which are encompassed under these systems of measurement have given rise, in some instances, to disputes, owing to the discontinuation of their Hebrew names and their replacement by other names in modern usage.
The cubit is an ancient unit of length based on the distance from the elbow to the tip of the middle finger. It was primarily associated with the Sumerians, Egyptians, and Israelites. The term cubit is found in the Bible regarding Noah's Ark, the Ark of the Covenant, the Tabernacle, and Solomon's Temple. The common cubit was divided into 6 palms × 4 fingers = 24 digits. Royal cubits added a palm for 7 palms × 4 fingers = 28 digits. These lengths typically ranged from 44.4 to 52.92 cm, with an ancient Roman cubit being as long as 120 cm.
Avoirdupois is a measurement system of weights that uses pounds and ounces as units. It was first commonly used in the 13th century AD and was updated in 1959.
A unit of length refers to any arbitrarily chosen and accepted reference standard for measurement of length. The most common units in modern use are the metric units, used in every country globally. In the United States the U.S. customary units are also in use. British Imperial units are still used for some purposes in the United Kingdom and some other countries. The metric system is sub-divided into SI and non-SI units.
The "Plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States" was a report submitted to the U.S. House of Representatives on July 13, 1790, by Secretary of State Thomas Jefferson.
A system of units of measurement, also known as a system of units or system of measurement, is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce. Instances in use include the International System of Units or SI, the British imperial system, and the United States customary system.
English units were the units of measurement used in England up to 1826, which evolved as a combination of the Anglo-Saxon and Roman systems of units. Various standards have applied to English units at different times, in different places, and for different applications.
Ancient Mesopotamian units of measurement originated in the loosely organized city-states of Early Dynastic Sumer. Each city, kingdom and trade guild had its own standards until the formation of the Akkadian Empire when Sargon of Akkad issued a common standard. This standard was improved by Naram-Sin, but fell into disuse after the Akkadian Empire dissolved. The standard of Naram-Sin was readopted in the Ur III period by the Nanše Hymn which reduced a plethora of multiple standards to a few agreed upon common groupings. Successors to Sumerian civilization including the Babylonians, Assyrians, and Persians continued to use these groupings. Akkado-Sumerian metrology has been reconstructed by applying statistical methods to compare Sumerian architecture, architectural plans, and issued official standards such as Statue B of Gudea and the bronze cubit of Nippur.
France has a unique history of units of measurement due to its radical decision to invent and adopt the metric system after the French Revolution.
A unit of measurement, or unit of measure, is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multiple of the unit of measurement.
The history of the metric system began during the Age of Enlightenment with measures of length and weight derived from nature, along with their decimal multiples and fractions. The system became the standard of France and Europe within half a century. Other measures with unity ratios were added, and the system went on to be adopted across the world.
The imperial and US customary measurement systems are both derived from an earlier English system of measurement which in turn can be traced back to Ancient Roman units of measurement, and Carolingian and Saxon units of measure.
The UK is the country stuck in the middle of both systems, being the birthplace of the imperial system itself. Here, metric is partially adopted but miles persist, and people routinely refer to pints, miles per gallon, pounds and even stone in their everyday lives.
This article incorporates public domain material from Specifications, Tolerances, and Other Technical Requirements for Weighing (Handbook 44 -2018). National Institute of Standards and Technology.