Specific quantity

Last updated

In the natural sciences, including physiology and engineering, a specific quantity generally refers to an intensive quantity obtained by the ratio of an extensive quantity of interest by another extensive quantity (usually mass or volume). If mass is the divisor quantity, the specific quantity is a massic quantity. [1] If volume is the divisor quantity, the specific quantity is a volumic quantity.[ citation needed ] For example, massic leaf area is leaf area divided by leaf mass and volumic leaf area is leaf area divided by leaf volume. Derived SI units involve reciprocal kilogram (kg-1), e.g., square metre per kilogram (m2 ·kg−1).

Contents

Another kind of specific quantity, termed named specific quantity, is a generalization of the original concept. The divisor quantity is not restricted to mass, and name of the divisor is usually placed before "specific" in the full term (e.g., "thrust-specific fuel consumption").

Named and unnamed specific quantities are given for the terms below.

List

Mass-specific quantities

Per unit of mass (short form of mass-specific):

Geometry specific quantities

Volume-specific quantity, the quotient of a physical quantity and volume ("per unit volume"), also called volumic quantities: [2]

Area-specific quantity, the quotient of a physical quantity and area ("per unit area"), also called areic quantities: [2]

Length-specific quantity, the quotient of a physical quantity and length ("per unit length"), also called lineic quantities: [2]

Other specific quantities

In chemistry:

Per unit of other types. The dividing unit is sometimes added before the term "specific", and sometimes omitted.

Usage

Reference tables
Specific properties are often used in reference tables as a means of recording material data in a manner that is independent of size or mass. This allows the data to be broadly applied while keeping the table compact.
Ranking, classifying, and comparing
Specific properties are useful for making comparisons about one attribute while cancelling out the effect of variations in another attribute. For instance, steel alloys are typically stronger than aluminum alloys but are also much denser. Greater strength allows less metal to be used, which makes the choice between the two metals less than obvious.[ clarification needed ] To simplify the comparison, one would compare the specific strength (strength to weight ratio) of the two metals. A more everyday example relates to grocery shopping: a 2 kg package sells for a higher price than 1 kg package of the same foodstuff, but what matters is the "specific price", commonly called the unit cost (cost in currency units per kilogram).
Mnemonics and qualitative reasoning
In many instances, specific properties are more intuitive or are easier to remember than the original properties, whether in SI or imperial units. For instance, it is easier to conceptualize an acceleration of 2g than an acceleration of 19.6 meters per second squared.

See also

Related Research Articles

<span class="mw-page-title-main">Enthalpy</span> Measure of energy in a thermodynamic system

In thermodynamics, enthalpy, is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work required to establish the system's physical dimensions, i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation, and other chemical "energies" are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

In thermodynamics, the specific heat capacity of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity or as the specific heat. Informally, it is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg−1⋅K−1.

<span class="mw-page-title-main">Thermodynamic temperature</span> Measure of absolute temperature

Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.

<span class="mw-page-title-main">Latent heat</span> Thermodynamic phase transition energy

Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation.

Thrust-specific fuel consumption (TSFC) is the fuel efficiency of an engine design with respect to thrust output. TSFC may also be thought of as fuel consumption (grams/second) per unit of thrust, hence thrust-specific. This figure is inversely proportional to specific impulse, which is the amount of thrust produced per unit fuel consumed.

<span class="mw-page-title-main">Intensive and extensive properties</span> Properties (of systems or substances) which do/dont change as the systems size changes

Physical or chemical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size of the system changes. The terms "intensive and extensive quantities" were introduced into physics by German mathematician Georg Helm in 1898, and by American physicist and chemist Richard C. Tolman in 1917.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Psychrometrics</span> Study of gas-vapor mixtures

Psychrometrics is the field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures.

Density and dense usually refer to a measure of how much of some entity is within a fixed amount of space. Types of density include:

The heating value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it.

The molar heat capacity of a chemical substance is the amount of energy that must be added, in the form of heat, to one mole of the substance in order to cause an increase of one unit in its temperature. Alternatively, it is the heat capacity of a sample of the substance divided by the amount of substance of the sample; or also the specific heat capacity of the substance times its molar mass. The SI unit of molar heat capacity is joule per kelvin per mole, J⋅K−1⋅mol−1.

<span class="mw-page-title-main">Thermodynamic equations</span> Equations in thermodynamics

Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or gravimetric energy density.

Specific energy or massic energy is energy per unit mass. It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, stored heat and other thermodynamic properties of substances such as specific internal energy, specific enthalpy, specific Gibbs free energy, and specific Helmholtz free energy. It may also be used for the kinetic energy or potential energy of a body. Specific energy is an intensive property, whereas energy and mass are extensive properties.

<span class="mw-page-title-main">Material properties (thermodynamics)</span>

The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are:

<span class="mw-page-title-main">Range (aeronautics)</span> Distance an aircraft can fly between takeoff and landing

The maximal total range is the maximum distance an aircraft can fly between takeoff and landing. Powered aircraft range is limited by the aviation fuel energy storage capacity considering both weight and volume limits. Unpowered aircraft range depends on factors such as cross-country speed and environmental conditions. The range can be seen as the cross-country ground speed multiplied by the maximum time in the air. The fuel time limit for powered aircraft is fixed by the available fuel and rate of consumption.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

Space Engine Systems Inc. (SES) is a Canadian aerospace company and is located in Edmonton, Alberta, Canada. The main focus of the company is the development of a light multi-fuel propulsion system to power a reusable single-stage-to-orbit (SSTO) and hypersonic cruise vehicle. Pumps, compressors, gear boxes, and other related technologies being developed are integrated into SES's major R&D projects. SES has collaborated with the University of Calgary to study and develop technologies in key technical areas of nanotechnology and high-speed aerodynamics.

References

  1. Cohen, E. R.; et al. (2007). IUPAC Green Book (PDF) (3rd ed.). Cambridge: IUPAC and RSC Publishing. pp. 6 (20 of 250 in PDF file). ISBN   978-0-85404-433-7.
  2. 1 2 3 4 5 "ISO 80000-1: Quantities and units — Part 1: General". iso.org. Retrieved 2023-10-16.