Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects. However, the vertical variation is especially significant, as it results from the pull of gravity on the fluid; namely, for the same given fluid, a decrease in elevation within it corresponds to a taller column of fluid weighing down on that point.
A relatively simple version [1] of the vertical fluid pressure variation is simply that the pressure difference between two elevations is the product of elevation change, gravity, and density. The equation is as follows:
where
The delta symbol indicates a change in a given variable. Since g is negative, an increase in height will correspond to a decrease in pressure, which fits with the previously mentioned reasoning about the weight of a column of fluid.
When density and gravity are approximately constant (that is, for relatively small changes in height), simply multiplying height difference, gravity, and density will yield a good approximation of pressure difference. If the pressure at one point in a liquid with uniform density ρ is known to be P0, then the pressure at another point is P1:
where h1 - h0 is the vertical distance between the two points. [2]
Where different fluids are layered on top of one another, the total pressure difference would be obtained by adding the two pressure differences; the first being from point 1 to the boundary, the second being from the boundary to point 2; which would just involve substituting the ρ and Δh values for each fluid and taking the sum of the results. If the density of the fluid varies with height, mathematical integration would be required.
Whether or not density and gravity can be reasonably approximated as constant depends on the level of accuracy needed, but also on the length scale of height difference, as gravity and density also decrease with higher elevation. For density in particular, the fluid in question is also relevant; seawater, for example, is considered an incompressible fluid; its density can vary with height, but much less significantly than that of air. Thus water's density can be more reasonably approximated as constant than that of air, and given the same height difference, the pressure differences in water are approximately equal at any height.
The barometric formula depends only on the height of the fluid chamber, and not on its width or length. Given a large enough height, any pressure may be attained. This feature of hydrostatics has been called the hydrostatic paradox. As expressed by W. H. Besant, [3]
The Flemish scientist Simon Stevin was the first to explain the paradox mathematically. [4] In 1916 Richard Glazebrook mentioned the hydrostatic paradox as he described an arrangement he attributed to Pascal: a heavy weight W rests on a board with area A resting on a fluid bladder connected to a vertical tube with cross-sectional area α. Pouring water of weight w down the tube will eventually raise the heavy weight. Balance of forces leads to the equation
Glazebrook says, "By making the area of the board considerable and that of the tube small, a large weight W can be supported by a small weight w of water. This fact is sometimes described as the hydrostatic paradox." [5]
Hydraulic machinery employs this phenomenon to multiply force or torque. Demonstrations of the hydrostatic paradox are used in teaching the phenomenon. [6] [7]
If one is to analyze the vertical pressure variation of the atmosphere of Earth, the length scale is very significant (troposphere alone being several kilometres tall; thermosphere being several hundred kilometres) and the involved fluid (air) is compressible. Gravity can still be reasonably approximated as constant, because length scales on the order of kilometres are still small in comparison to Earth's radius, which is on average about 6371 km, [8] and gravity is a function of distance from Earth's core. [9]
Density, on the other hand, varies more significantly with height. It follows from the ideal gas law that
where
Put more simply, air density depends on air pressure. Given that air pressure also depends on air density, it would be easy to get the impression that this was circular definition, but it is simply interdependency of different variables. This then yields a more accurate formula, of the form
where
Therefore, instead of pressure being a linear function of height as one might expect from the more simple formula given in the "basic formula" section, it is more accurately represented as an exponential function of height.
Note that in this simplification, the temperature is treated as constant, even though temperature also varies with height. However, the temperature variation within the lower layers of the atmosphere (troposphere, stratosphere) is only in the dozens of degrees, as opposed to their thermodynamic temperature, which is in the hundreds, so the temperature variation is reasonably small and is thus ignored. For smaller height differences, including those from top to bottom of even the tallest of buildings, (like the CN Tower) or for mountains of comparable size, the temperature variation will easily be within the single-digits. (See also lapse rate.)
An alternative derivation, shown by the Portland State Aerospace Society, [10] is used to give height as a function of pressure instead. This may seem counter-intuitive, as pressure results from height rather than vice versa, but such a formula can be useful in finding height based on pressure difference when one knows the latter and not the former. Different formulas are presented for different kinds of approximations; for comparison with the previous formula, the first referenced from the article will be the one applying the same constant-temperature approximation; in which case:
where (with values used in the article)
A more general formula derived in the same article accounts for a linear change in temperature as a function of height (lapse rate), and reduces to above when the temperature is constant:
where
and the other quantities are the same as those above. This is the recommended formula to use.
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.
Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.
Atmospheric pressure, also known as air pressure or barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.
In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or the fluid's potential energy. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.
Geopotential height or geopotential altitude is a vertical coordinate referenced to Earth's mean sea level that represents the work involved in lifting one unit of mass over one unit of length through a hypothetical space in which the acceleration of gravity is assumed constant. In SI units, a geopotential height difference of one meter implies the vertical transport of a parcel of one kilogram; adopting the standard gravity value, it corresponds to a constant work or potential energy difference of 9.80665 joules.
Buoyancy, or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.
Equivalent potential temperature, commonly referred to as theta-e, is a quantity that is conserved during changes to an air parcel's pressure, even if water vapor condenses during that pressure change. It is therefore more conserved than the ordinary potential temperature, which remains constant only for unsaturated vertical motions.
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.
The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C, air has a density of approximately 1.204 kg/m3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m3 (0.0765 lb/cu ft), which is about 1⁄800 that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is 1,000 kg/m3 (62 lb/cu ft).
Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body".
The barometric formula is a formula used to model how the pressure of the air changes with altitude.
In atmospheric science, the thermal wind is the vector difference between the geostrophic wind at upper altitudes minus that at lower altitudes in the atmosphere. It is the hypothetical vertical wind shear that would exist if the winds obey geostrophic balance in the horizontal, while pressure obeys hydrostatic balance in the vertical. The combination of these two force balances is called thermal wind balance, a term generalizable also to more complicated horizontal flow balances such as gradient wind balance.
Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum.
In atmospheric, earth, and planetary sciences, a scale height, usually denoted by the capital letter H, is a distance over which a physical quantity decreases by a factor of e.
A reference atmospheric model describes how the ideal gas properties of an atmosphere change, primarily as a function of altitude, and sometimes also as a function of latitude, day of year, etc. A static atmospheric model has a more limited domain, excluding time. A standard atmosphere is defined by the World Meteorological Organization as "a hypothetical vertical distribution of atmospheric temperature, pressure and density which, by international agreement, is roughly representative of year-round, midlatitude conditions."
In fluid dynamics, dynamic pressure is the quantity defined by:
The hypsometric equation, also known as the thickness equation, relates an atmospheric pressure ratio to the equivalent thickness of an atmospheric layer considering the layer mean of virtual temperature, gravity, and occasionally wind. It is derived from the hydrostatic equation and the ideal gas law.
The capillary length or capillary constant, is a length scaling factor that relates gravity and surface tension. It is a fundamental physical property that governs the behavior of menisci, and is found when body forces (gravity) and surface forces are in equilibrium.
Pascal's law is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. The law was established by French mathematician Blaise Pascal in 1653 and published in 1663.
Stevin provides an original mathematical demonstration of the so-called hydrostatic paradox
Media related to Hydrostatic paradox at Wikimedia Commons