Author | Johannes Kepler |
---|---|
Language | Latin |
Subject | Astronomy, Music |
Publisher | Linz |
Publication date | 1619 |
Harmonice Mundi (Harmonices mundi libri V) [1] (Latin: The Harmony of the World, 1619) is a book by Johannes Kepler. In the work, written entirely in Latin, Kepler discusses harmony and congruence in geometrical forms and physical phenomena. The final section of the work relates his discovery of the so-called third law of planetary motion. [2]
Kepler began working on Harmonice Mundi around 1599, which was the year Kepler sent a letter to Michael Maestlin detailing the mathematical data and proofs that he intended to use for his upcoming text, which he originally planned to name De harmonia mundi. Kepler was aware that the content of Harmonice Mundi closely resembled that of the subject matter for Ptolemy's Harmonica, but was not concerned. The new astronomy Kepler would use (most notably the adoption of elliptic orbits in the Copernican system) allowed him to explore new theorems. Another important development that allowed Kepler to establish his celestial-harmonic relationships was the abandonment of the Pythagorean tuning as the basis for musical consonance and the adoption of geometrically supported musical ratios; this would eventually be what allowed Kepler to relate musical consonance and the angular velocities of the planets. Thus, Kepler could reason that his relationships gave evidence for God acting as a grand geometer, rather than a Pythagorean numerologist. [3]
The concept of musical harmonies intrinsically existing within the spacing of the planets existed in medieval philosophy prior to Kepler. Musica universalis was a traditional philosophical metaphor that was taught in the quadrivium, and was often called the "music of the spheres." Kepler was intrigued by this idea while he sought explanation for a rational arrangement of the heavenly bodies. [4] When Kepler uses the term "harmony" it is not strictly referring to the musical definition, but rather a broader definition encompassing congruence in Nature and the workings of both the celestial and terrestrial bodies. He notes musical harmony as being a product of man, derived from angles, in contrast to a harmony that he refers to as being a phenomenon that interacts with the human soul. In turn, this allowed Kepler to claim the Earth has a soul because it is subjected to astrological harmony. [3]
While writing the book, Kepler had to defend his mother in court after she had been accused of witchcraft. [5]
Kepler divides The Harmony of the World into five long chapters: the first is on regular polygons; the second is on the congruence of figures; the third is on the origin of harmonic proportions in music; the fourth is on harmonic configurations in astrology; the fifth is on the harmony of the motions of the planets. [6]
Chapters 1 and 2 of The Harmony of the World contain most of Kepler's contributions concerning polyhedra. He is primarily interested with how polygons, which he defines as either regular or semiregular, can come to be fixed together around a central point on a plane to form congruence. His primary objective was to be able to rank polygons based on a measure of sociability, or rather, their ability to form partial congruence when combined with other polyhedra. He returns to this concept later in Harmonice Mundi with relation to astronomical explanations. In the second chapter is the earliest mathematical understanding of two types of regular star polyhedra, the small and great stellated dodecahedron; they would later be called Kepler's solids or Kepler Polyhedra and, together with two regular polyhedra discovered by Louis Poinsot, as the Kepler–Poinsot polyhedra. [7] He describes polyhedra in terms of their faces, which is similar to the model used in Plato's Timaeus to describe the formation of Platonic solids in terms of basic triangles. [3] The book features illustrations of solids and tiling patterns, some of which are related to the golden ratio. [8]
While medieval philosophers spoke metaphorically of the "music of the spheres", Kepler discovered physical harmonies in planetary motion. He found that the difference between the maximum and minimum angular speeds of a planet in its orbit approximates a harmonic proportion. For instance, the maximum angular speed of the Earth as measured from the Sun varies by a semitone (a ratio of 16:15), from mi to fa, between aphelion and perihelion. Venus only varies by a tiny 25:24 interval (called a diesis in musical terms). [6] Kepler explains the reason for the Earth's small harmonic range:
The Earth sings Mi, Fa, Mi: you may infer even from the syllables that in this our home misery and famine hold sway. [9]
The celestial choir Kepler formed was made up of a tenor (Mars), two bass (Saturn and Jupiter), a soprano (Mercury), and two altos (Venus and Earth). Mercury, with its large elliptical orbit, was determined to be able to produce the greatest number of notes, while Venus was found to be capable of only a single note because its orbit is nearly a circle. [6] [10] At very rare intervals all of the planets would sing together in "perfect concord": Kepler proposed that this may have happened only once in history, perhaps at the time of creation. [11] Kepler reminds us that harmonic order is only mimicked by man, but has origin in the alignment of the heavenly bodies:
Accordingly you won't wonder any more that a very excellent order of sounds or pitches in a musical system or scale has been set up by men, since you see that they are doing nothing else in this business except to play the apes of God the Creator and to act out, as it were, a certain drama of the ordination of the celestial movements.
— Book V [6]
Kepler discovers that all but one of the ratios of the maximum and minimum speeds of planets on neighboring orbits approximate musical harmonies within a margin of error of less than a diesis (a 25:24 interval). The orbits of Mars and Jupiter produce the one exception to this rule, creating the inharmonic ratio of 18:19. [6]
Chapter 5 includes a long digression on astrology. This is immediately followed by Kepler's third law of planetary motion, which shows a constant proportionality between the cube of the semi-major axis of a planet's orbit and the square of the time of its orbital period. [9] Kepler's previous book, Astronomia nova , related the discovery of the first two principles now known as Kepler's laws.
A copy of the 1619 edition was stolen from the National Library of Sweden in the 1990s. [12]
A small number of recent compositions either make reference to or are based on the concepts of Harmonice Mundi or Harmony of the Spheres. The most notable of these are:
Johannes Kepler was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of planetary motion, and his books Astronomia nova, Harmonice Mundi, and Epitome Astronomiae Copernicanae, influencing among others Isaac Newton, providing one of the foundations for his theory of universal gravitation. The variety and impact of his work made Kepler one of the founders and fathers of modern astronomy, the scientific method, natural and modern science. He has been described as the "father of science fiction" for his novel Somnium.
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:
In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.
In astrology, an aspect is an angle that planets make to each other in the horoscope; as well as to the Ascendant, Midheaven, Descendant, Lower Midheaven, and other points of astrological interest. As viewed from Earth, aspects are measured by the angular distance in degrees and minutes of ecliptic longitude between two points. According to astrological tradition, they indicate the timing of transitions and developmental changes in the lives of people and affairs relative to the Earth.
In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.
The musica universalis, also called music of the spheres or harmony of the spheres, is a philosophical concept that regards proportions in the movements of celestial bodies—the Sun, Moon, and planets—as a form of music. The theory, originating in ancient Greece, was a tenet of Pythagoreanism, and was later developed by 16th-century astronomer Johannes Kepler. Kepler did not believe this "music" to be audible, but felt that it could nevertheless be heard by the soul. The idea continued to appeal to scholars until the end of the Renaissance, influencing many schools of thought, including humanism.
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.
In Western music theory, a major second is a second spanning two semitones. A second is a musical interval encompassing two adjacent staff positions. For example, the interval from C to D is a major second, as the note D lies two semitones above C, and the two notes are notated on adjacent staff positions. Diminished, minor and augmented seconds are notated on adjacent staff positions as well, but consist of a different number of semitones.
The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees (of a major scale are called major.
A semitone, also called a minor second, half step, or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C♯; the interval between them is a semitone.
In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Strictly speaking, there are only two kinds of comma, the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F♯ tuned using the D-based Pythagorean tuning system, and another F♯ tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B♭ and A♯ are both approximated by the same interval although they are a septimal kleisma apart.
Spherical astronomy, or positional astronomy, is a branch of observational astronomy used to locate astronomical objects on the celestial sphere, as seen at a particular date, time, and location on Earth. It relies on the mathematical methods of spherical trigonometry and the measurements of astrometry.
Astronomia nova is a book, published in 1609, that contains the results of the astronomer Johannes Kepler's ten-year-long investigation of the motion of Mars.
In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron or inside of it. It was studied by Max Brückner after the discovery of Kepler–Poinsot polyhedron. It can be viewed as an irregular, simple, and star polyhedron.
Mysterium Cosmographicum is an astronomy book by the German astronomer Johannes Kepler, published at Tübingen in late 1596 and in a second edition in 1621. Kepler proposed that the distance relationships between the six planets known at that time could be understood in terms of the five Platonic solids, enclosed within a sphere that represented the orbit of Saturn.
A septimal comma is a small musical interval in just intonation that contains the number seven in its prime factorization. There is more than one such interval, so the term septimal comma is ambiguous, but it most commonly refers to the interval 64/63.
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.
Die Harmonie der Welt is an opera in five acts by Paul Hindemith. The German libretto was by the composer.
A septimal 1/3-tone is an interval with the ratio of 28:27, which is the difference between the perfect fourth and the supermajor third. It is about 62.96 cents wide. The septimal 1/3-tone can be viewed either as a musical interval in its own right, or as a comma; if it is tempered out in a given tuning system, the distinction between these two intervals is lost. The septimal 1/3-tone may be derived from the harmonic series as the interval between the twenty-seventh and twenty-eighth harmonics. It may be considered a diesis.
An astronomical system positing that the Earth, Moon, Sun, and planets revolve around an unseen "Central Fire" was developed in the fifth century BC and has been attributed to the Pythagorean philosopher Philolaus. The system has been called "the first coherent system in which celestial bodies move in circles", anticipating Copernicus in moving "the earth from the center of the cosmos [and] making it a planet". Although its concepts of a Central Fire distinct from the Sun, and a nonexistent "Counter-Earth" were erroneous, the system contained the insight that "the apparent motion of the heavenly bodies" was due to "the real motion of the observer". How much of the system was intended to explain observed phenomena and how much was based on myth, mysticism, and religion is disputed. While the departure from traditional reasoning is impressive, other than the inclusion of the five visible planets, very little of the Pythagorean system is based on genuine observation. In retrospect, Philolaus's views are "less like scientific astronomy than like symbolical speculation."
Die Harmonie der Welt Symphony, IPH 50, is a symphony by German composer Paul Hindemith composed in 1951, which served as the basis for his opera Die Harmonie der Welt.