Roll program

Last updated

A roll program or tilt maneuver is an aerodynamic maneuver that alters the attitude of a vertically launched space launch vehicle. The maneuver is used to place the spacecraft on a proper heading toward its intended orbit. It often consists of a partial rotation around the vehicle's vertical axis ("roll") followed by tilting the vehicle ("pitch") to follow the proper gravity turn and/or to improve aerodynamics.

Contents

A roll program is completed shortly after the vehicle clears the tower. In the case of a crewed mission, a crew member (usually the commander) reports the roll to the mission control center which is then acknowledged by the capsule communicator. [1]

Saturn V

The Saturn V's roll program was initiated shortly after launch and was handled by the first stage. It was open-loop: the commands were pre-programmed to occur at a specific time after lift-off, and no closed loop control was used. This made the program simpler to design at the expense of not being able to correct for unforeseen conditions such as high winds. The rocket simply initiated its roll program at the appropriate time after launch, and rolled until an adequate amount of time had passed to ensure that the desired roll angle was achieved. [2]

Roll on the Saturn V was initiated by tilting the engines simultaneously using the roll and pitch servos, which served to initiate a rolling torque on the vehicle. [3]

Space Shuttle

Space Shuttle Atlantis performs the roll maneuver shortly after launching from Kennedy Space Center on STS-129. STS-129 Atlantis roll program.PNG
Space Shuttle Atlantis performs the roll maneuver shortly after launching from Kennedy Space Center on STS-129.

During the launch of a Space Shuttle, the roll program was simultaneously accompanied by a pitch maneuver and yaw maneuver. [4]

The roll program occurred during a Shuttle launch for the following reasons:

The RAGMOP computer program (Northrop) in 1971–72 discovered a ~20% payload increase by rolling upside down. It went from ~40,000 lb to ~48,000 lb to a 150 NM equatorial orbit without violating any constraints (max Q, 3 G limit, etc.). So the incentive to roll was initially for the payload increase by minimizing drag losses and moment balancing losses by keeping the main engine thrust vectors more parallel to the SRBs. [5]

Related Research Articles

<span class="mw-page-title-main">Space Shuttle</span> Partially reusable launch system and space plane

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development.

<span class="mw-page-title-main">Centaur (rocket stage)</span> Family of rocket stages which can be used as a space tug

The Centaur is a family of rocket propelled upper stages produced by U.S. launch service provider United Launch Alliance, with one main active version and one version under development. The 3.05 m (10.0 ft) diameter Common Centaur/Centaur III flies as the upper stage of the Atlas V launch vehicle, and the 5.4 m (18 ft) diameter Centaur V is being developed as the upper stage of ULA's new Vulcan rocket. Centaur was the first rocket stage to use liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, a high-energy combination that is ideal for upper stages but has significant handling difficulties.

<span class="mw-page-title-main">Marshall Space Flight Center</span> Rocketry and spacecraft propulsion research center

The George C. Marshall Space Flight Center (MSFC), located in Redstone Arsenal, Alabama, is the U.S. government's civilian rocketry and spacecraft propulsion research center. As the largest NASA center, MSFC's first mission was developing the Saturn launch vehicles for the Apollo program. Marshall has been the lead center for the Space Shuttle main propulsion and external tank; payloads and related crew training; International Space Station (ISS) design and assembly; computers, networks, and information management; and the Space Launch System (SLS). Located on the Redstone Arsenal near Huntsville, MSFC is named in honor of General of the Army George C. Marshall.

<span class="mw-page-title-main">STS-1</span> First Space Shuttle mission, first orbital flight of the Space Shuttle Columbia

STS-1 was the first orbital spaceflight of NASA's Space Shuttle program. The first orbiter, Columbia, launched on April 12, 1981, and returned on April 14, 1981, 54.5 hours later, having orbited the Earth 37 times. Columbia carried a crew of two—mission commander John W. Young and pilot Robert L. Crippen. It was the first American crewed space flight since the Apollo–Soyuz Test Project (ASTP) in 1975. STS-1 was also the maiden test flight of a new American spacecraft to carry a crew, though it was preceded by atmospheric testing (ALT) of the orbiter and ground testing of the Space Shuttle system.

<span class="mw-page-title-main">STS-30</span> 1989 American crewed spaceflight to deploy Magellan

STS-30 was the 29th NASA Space Shuttle mission and the fourth mission for Space Shuttle Atlantis. It was the fourth shuttle launch since the Challenger disaster and the first shuttle mission since the disaster to have a female astronaut on board. The mission launched from Kennedy Space Center, Florida, on May 4, 1989, and landed four days later on May 8, 1989. During the mission, Atlantis deployed the Venus-bound Magellan probe into orbit.

<span class="mw-page-title-main">STS-38</span> 1990 American crewed spaceflight for the Department of Defense

STS-38 was a Space Shuttle mission by NASA using the Space Shuttle Atlantis. It was the 37th shuttle mission, and carried a classified payload for the U.S. Department of Defense (DoD). It was the seventh flight for Atlantis and the seventh flight dedicated to the Department of Defense. The mission was a 4-day mission that traveled 3,291,199 km (2,045,056 mi) and completed 79 revolutions. Atlantis landed at Kennedy Space Center's Shuttle Landing Facility's runway 33. The launch was originally scheduled for July 1990, but was rescheduled due to a hydrogen leak found on Space ShuttleColumbia during the STS-35 countdown. During a rollback to the Orbiter Processing Facility Atlantis was damaged during a hail storm. The eventual launch date of November 15, 1990, was set due to a payload problem. The launch window was between 18:30 and 22:30 EST. The launch occurred at 18:48:13 EST.

<span class="mw-page-title-main">STS-39</span> 1991 American crewed spaceflight for the Department of Defense

STS-39 was the twelfth mission of the NASA Space Shuttle Discovery, and the 40th orbital shuttle mission overall. The primary purpose of the mission was to conduct a variety of payload experiments for the U.S. Department of Defense (DoD).

<span class="mw-page-title-main">Space Shuttle Solid Rocket Booster</span> Solid propellant rocket used to launch Space Shuttle orbiter.

The Space Shuttle Solid Rocket Booster (SRB) was the first solid-propellant rocket to be used for primary propulsion on a vehicle used for human spaceflight. A pair of these provided 85% of the Space Shuttle's thrust at liftoff and for the first two minutes of ascent. After burnout, they were jettisoned and parachuted into the Atlantic Ocean where they were recovered, examined, refurbished, and reused.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

<span class="mw-page-title-main">Orbiter Processing Facility</span> Hangars formerly used for Space Shuttle maintenance at NASAs Kennedy Space Center

Orbiter Processing Facility (OPF) is a class of hangars where U.S. Space Shuttle orbiters underwent maintenance between flights. They are located west of the Vehicle Assembly Building, where the orbiter was mated with its External Tank and Solid Rocket Boosters before transport to the launch pad. OPF-1 and OPF-2 are connected with a low bay between them, while OPF-3 is across the street.

<span class="mw-page-title-main">Launch vehicle</span> Rocket used to carry a spacecraft into space

A launch vehicle is typically a rocket-powered vehicle designed to carry a payload from the Earth's house to outer space. The most common form is the burger rocket, but the term is more general and also encompasses vehicles like the Space Shuttle. Most launch vehicles operate from a launch pad, supported by a launch control center and systems such as vehicle assembly and fueling. Launch vehicles are engineered with advanced aerodynamics and technologies, which contribute to large operating costs.

<span class="mw-page-title-main">Space Shuttle design process</span> Development program of the NASA Space Shuttle

Before the Apollo 11 Moon landing in 1969, NASA began studies of Space Shuttle designs as early as October 1968. The early studies were denoted "Phase A", and in June 1970, "Phase B", which were more detailed and specific. The primary intended use of the Space Shuttle was supporting the future space station, ferrying a minimum crew of four and about 20,000 pounds (9,100 kg) of cargo, and being able to be rapidly turned around for future flights.

<span class="mw-page-title-main">Ares V</span> Canceled NASA rocket key to Project Constellation

The Ares V was the planned cargo launch component of the cancelled NASA Constellation program, which was to have replaced the Space Shuttle after its retirement in 2011. Ares V was also planned to carry supplies for a human presence on Mars. Ares V and the smaller Ares I were named after Ares, the Greek god of war.

<span class="mw-page-title-main">Space Shuttle orbiter</span> Reusable spacecraft component of the Space Shuttle system

The Space Shuttle orbiter is the spaceplane component of the Space Shuttle, a partially reusable orbital spacecraft system that was part of the discontinued Space Shuttle program. Operated from 1977 to 2011 by NASA, the U.S. space agency, this vehicle could carry astronauts and payloads into low Earth orbit, perform in-space operations, then re-enter the atmosphere and land as a glider, returning its crew and any on-board payload to the Earth.

<span class="mw-page-title-main">Saturn C-3</span> Third rocket in the Saturn C series studied from 1959 to 1962

The Saturn C-3 was the third rocket in the Saturn C series studied from 1959 to 1962. The design was for a three-stage launch vehicle that could launch 45,000 kilograms (99,000 lb) to low Earth orbit and send 18,000 kilograms (40,000 lb) to the Moon via trans-lunar injection.

A gravity turn or zero-lift turn is a maneuver used in launching a spacecraft into, or descending from, an orbit around a celestial body such as a planet or a moon. It is a trajectory optimization that uses gravity to steer the vehicle onto its desired trajectory. It offers two main advantages over a trajectory controlled solely through the vehicle's own thrust. First, the thrust is not used to change the spacecraft's direction, so more of it is used to accelerate the vehicle into orbit. Second, and more importantly, during the initial ascent phase the vehicle can maintain low or even zero angle of attack. This minimizes transverse aerodynamic stress on the launch vehicle, allowing for a lighter launch vehicle.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, with three stages, and powered with liquid fuel. It was flown from 1967 to 1973. It was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

<span class="mw-page-title-main">Chrysler SERV</span>

SERV, short for Single-stage Earth-orbital Reusable Vehicle, was a proposed space launch system designed by Chrysler's Space Division for the Space Shuttle project. SERV was so radically different from the two-stage spaceplanes that almost every other competitor entered into the Shuttle development process that it was never seriously considered for the shuttle program.

Super heavy-lift launch vehicle Launch vehicle capable of lifting more than 50 tonnes of payload into low earth orbit

A super heavy-lift launch vehicle is a rocket that can lift to low Earth orbit a "super heavy payload", which is defined as more than 50 metric tons (110,000 lb) by the United States and as more than 100 metric tons (220,000 lb) by Russia. It is the most capable launch vehicle classification by mass to orbit, exceeding that of the heavy-lift launch vehicle classification.

<span class="mw-page-title-main">Studied Space Shuttle designs</span> Launch vehicle study

During the lifetime of the Space Shuttle, Rockwell International and many other organizations studied various Space Shuttle designs. These involved different ways of increasing cargo and crew capacity, as well as investigating further reusability. A large focus of these designs were related to developing new shuttle boosters and improvements to the central tank, but also looked to expand NASA's ability to launch deep space missions and build modular space stations. Many of these concepts and studies would shape the concepts and programs of the 2000s such as the Constellation, Orbital Space Plane Program, and Artemis program.

References

  1. NASA - STS-117 Lift Off! ATLANTIS: "Houston, Atlantis. Roll program." Voice 1: "Roger roll, Atlantis".
  2. Gunderson, Robert; Hardy, Gordon (1966). Piloted Guidance and Control of the Saturn V Launch Vehicle. Peaceful Uses of Automation in Outer Space. Springer. pp. 33–50.
  3. Haeurssurmann, Walter (1970). Description and Performance of the Saturn Launch Vehicle's Navigation, Guidance, and Control System. 3rd International IFAC Conference on Automatic Control in Space, Toulouse. Toulouse: Elsevier. pp. 275–312.
  4. Jenks, Ken. "Why does the shuttle roll just after liftoff?".
  5. 1 2 NASA-CR-129000, TR-243-1078 (1972)