Observation data Epoch J2000.0 (ICRS) Equinox J2000.0 (ICRS) | |
---|---|
Constellation | Virgo |
Right ascension | 12h 01m 45.9729s [2] |
Declination | −03° 45′ 40.6279″ [2] |
Apparent magnitude (V) | 14.9 [3] |
Astrometry | |
Proper motion (μ) | RA: −14.213±0.155 [2] mas/yr Dec.: −3.260±0.064 [2] mas/yr |
Parallax (π) | 1.8131 ± 0.0821 mas [2] |
Distance | 1,800 ± 80 ly (550 ± 20 pc) |
Details | |
Mass | 0.63 [4] M☉ |
Radius | 0.0254 ± 0.005 [5] R☉ |
Luminosity (bolometric) | 200 [5] L☉ |
Surface gravity (log g) | 7.59 [4] cgs |
Temperature | 136,000 [4] K |
Other designations | |
GW Vir, GW Virginis, 2E 2572, WD 1159-034 | |
Database references | |
SIMBAD | data |
PG 1159-035 is the prototypical PG 1159 star after which the class of PG 1159 stars was named. It was discovered in the Palomar-Green survey of ultraviolet-excess stellar objects [6] and, like the other PG 1159 stars, is in transition between being the central star of a planetary nebula and being a white dwarf. [7]
The luminosity of PG 1159-035 was observed to vary in 1979, [8] and it was given the variable star designation GW Vir in 1985. [9] Variable PG 1159 stars may be called GW Vir stars, or the class may be split into DOV and PNNV stars. [10] [11] The variability of PG 1139-035, like that of other GW Vir stars, arises from non-radial gravity wave pulsations within itself. [12] Its light curve has been observed intensively by the Whole Earth Telescope over a 264-hour period in March 1989, and over 100 of its vibrational modes have been found in the resulting vibrational spectrum, with periods ranging from 300 to 1,000 seconds. [13] [14]
BPM 37093 is a variable white dwarf star of the DAV, or ZZ Ceti, type, with a hydrogen atmosphere and an unusually high mass of approximately 1.1 times the Sun's. It is 48 light-years from Earth in the constellation Centaurus and vibrates; these pulsations cause its luminosity to vary. Like other white dwarfs, BPM 37093 is thought to be composed primarily of carbon and oxygen, which are created by thermonuclear fusion of helium nuclei in the triple-alpha process.
Gamma Pegasi is a star in the constellation of Pegasus, located at the southeast corner of the asterism known as the Great Square. It has the formal name Algenib ; the Bayer designation Gamma Pegasi is Latinized from γ Pegasi and abbreviated Gamma Peg or γ Peg. The average apparent visual magnitude of +2.84 makes this the fourth-brightest star in the constellation. The distance to this star has been measured using the parallax technique, yielding a value of roughly 470 light-years.
TZ Arietis is a red dwarf in the northern constellation of Aries. With a normal apparent visual magnitude of 12.3, it is too faint to be seen by the naked eye, although it lies relatively close to the Sun at a distance of 14.6 light-years. It is a flare star, which means it can suddenly increase in brightness for short periods of time.
Delta Scuti, Latinized from δ Scuti, is a variable star in the southern constellation Scutum. With an apparent visual magnitude that fluctuates around 4.72, it is the fifth-brightest star in this small and otherwise undistinguished constellation. Analysis of the parallax measurements place this star at a distance of about 199 light-years from Earth. It is drifting closer with a radial velocity of −45 km/s.
Beta Cephei variables, also known as Beta Canis Majoris stars, are variable stars that exhibit small rapid variations in their brightness due to pulsations of the stars' surfaces, thought due to the unusual properties of iron at temperatures of 200,000 K in their interiors. These stars are usually hot blue-white stars of spectral class B and should not be confused with Cepheid variables, which are named after Delta Cephei and are luminous supergiant stars.
9 Aurigae is a star system in Auriga (constellation). It has an apparent magnitude of about 5, making it visible to the naked eye in many suburban skies. Parallax estimates made by the Hipparcos spacecraft put it at about 86 light-years from the solar system, although individual Gaia Data Release 3 parallaxes place all three components at 88 light years.
RT Aurigae is a yellow supergiant variable star in the constellation Auriga, about 1,500 light years from Earth.
Alpha Cygni variables are variable stars which exhibit non-radial pulsations, meaning that some portions of the stellar surface are contracting at the same time other parts expand. They are supergiant stars of spectral types B or A. Variations in brightness on the order of 0.1 magnitudes are associated with the pulsations, which often seem irregular, due to beating of multiple pulsation periods. The pulsations typically have periods of several days to several weeks.
HL Tau 76 is a variable white dwarf star of the DAV type. It was observed by G. Haro and W. J. Luyten in 1961, and was the first variable white dwarf discovered when, in 1968, Arlo U. Landolt found that it varied in brightness with a period of approximately 749.5 seconds, or 12.5 minutes. Like other DAV white dwarfs, its variability arises from non-radial gravity wave pulsations within itself., § 7. Later observation and analysis has found HL Tau 76 to pulsate in over 40 independent vibrational modes, with periods between 380 seconds and 1390 seconds.
A pulsating white dwarf is a white dwarf star whose luminosity varies due to non-radial gravity wave pulsations within itself. Known types of pulsating white dwarfs include DAV, or ZZ Ceti, stars, with hydrogen-dominated atmospheres and the spectral type DA; DBV, or V777 Her, stars, with helium-dominated atmospheres and the spectral type DB; and GW Vir stars, with atmospheres dominated by helium, carbon, and oxygen, and the spectral type PG 1159. GW Vir stars may be subdivided into DOV and PNNV stars; they are not, strictly speaking, white dwarfs but pre-white dwarfs which have not yet reached the white dwarf region on the Hertzsprung-Russell diagram. A subtype of DQV stars, with carbon-dominated atmospheres, has also been proposed, and in May 2012, the first extremely low mass variable (ELMV) white dwarf was reported.
G117-B15A is a small, well-observed variable white dwarf star of the DAV, or ZZ Ceti, type in the constellation of Leo Minor.
A PG 1159 star, often also called a pre-degenerate, is a star with a hydrogen-deficient atmosphere that is in transition between being the central star of a planetary nebula and being a hot white dwarf. These stars are hot, with surface temperatures between 75,000 K and 200,000 K, and are characterized by atmospheres with little hydrogen and absorption lines for helium, carbon and oxygen. Their surface gravity is typically between 104 and 106 meters per second squared. Some PG 1159 stars are still fusing helium., § 2.1.1, 2.1.2, Table 2. The PG 1159 stars are named after their prototype, PG 1159-035. This star, found in the Palomar-Green survey of ultraviolet-excess stellar objects, was the first PG 1159 star discovered.
GD 358 is a variable white dwarf star of the DBV type. Like other pulsating white dwarfs, its variability arises from non-radial gravity wave pulsations within the star itself. GD 358 was discovered during the 1958–1970 Lowell Observatory survey for high proper motion stars in the Northern Hemisphere. Although it did not have high proper motion, it was noticed that it was a very blue star, and hence might be a white dwarf. Greenstein confirmed this in 1969.
T Cephei is a Mira variable star in the constellation Cepheus. Located approximately 600 light-years distant, it varies between magnitudes 5.2 and 11.3 over a period of around 388 days.
W Virginis is the prototype W Virginis variable, a subclass of the Cepheid variable stars. It is located in the constellation Virgo, and varies between magnitudes 9.46 and 10.75 over a period of approximately 17 days.
FG Virginis is a well-studied variable star in the equatorial constellation of Virgo. It is a dim star, near the lower limit of visibility to the naked eye, with an apparent visual magnitude that ranges from 6.53 down to 6.58. The star is located at a distance of 273.5 light years from the Sun based on parallax measurements, and is drifting further away with a radial velocity of +16 km/s. Because of its position near the ecliptic, it is subject to lunar occultations.
The Whole Earth Telescope is an international network of astronomers that collaborate to study variable stars. The distribution of the observatories in longitude allow the selected targets to be continuously monitored despite the rotation of the Earth.
RT Virginis is a variable star in the equatorial constellation of Virgo, abbreviated RT Vir. It ranges in brightness from an apparent visual magnitude of 7.7 down to 9.7, which is too faint to be visible to the naked eye. Based on parallax measurements made with the VLBI, the distance to this star is approximately 740 light years. It is receding from the Sun with a radial velocity of 17 km/s.
AE Ursae Majoris is a star in the northern circumpolar constellation of Ursa Major, abbreviated AE UMa. It is a variable star that ranges in brightness from a peak apparent visual magnitude of 10.86 down to 11.52. The distance to this star is approximately 2,400 light years based on parallax measurements.
X Cygni is a variable star in the northern constellation of Cygnus, abbreviated X Cyg. This is a Delta Cephei variable that ranges in brightness from an apparent visual magnitude of 5.85 down to 6.91 with a period of 16.386332 days. At it brightest, this star is dimly visible to the naked eye. The distance to this star is approximately 628 light years based on parallax measurements. It is drifting further away with a radial velocity of 8.1 km/s. This star is a likely member of the open cluster Ruprecht 173.