WASP-85 Ab

Last updated
WASP-85 Ab
Discovery
Discovered by SuperWASP
Discovery date2014
Transit
Orbital characteristics
0.038 AU (5,700,000 km)
Eccentricity 0.103
2.656 d
Inclination 349.0
Star WASP-85 A
Physical characteristics
Mean radius
1.2 RJ

    WASP-85 Ab is an exoplanet that orbits WASP-85 A, a star that is part of a binary system. WASP-85 Ab's mass and radius indicate that it has a bulk composition like that of Jupiter. Unlike Jupiter, and similar to other gas giants, it orbits very close to its star, and is classified as a hot Jupiter. [1]

    Contents

    See also

    Related Research Articles

    <span class="mw-page-title-main">Hot Jupiter</span> Class of high mass planets orbiting close to a star

    Hot Jupiters are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods. The close proximity to their stars and high surface-atmosphere temperatures resulted in their informal name "hot Jupiters".

    <span class="mw-page-title-main">Rossiter–McLaughlin effect</span> Spectroscopic phenomenon in astronomy

    The Rossiter–McLaughlin effect is a spectroscopic phenomenon observed when an object moves across the face of a star.

    <span class="mw-page-title-main">94 Ceti b</span> Extrasolar planet in the constellation Cetus

    94 Ceti b or 94 Ceti Ab to distinguish it from the distant red dwarf companion, is an extrasolar planet orbiting its star once every 1.2 years. It was discovered on August 7, 2000 by a team led by Michel Mayor.

    <span class="mw-page-title-main">55 Cancri b</span> Extrasolar planet in the constellation Cancer

    55 Cancri b, occasionally designated 55 Cancri Ab, also named Galileo, is an exoplanet orbiting the Sun-like star 55 Cancri A every 14.65 days. It is the second planet in order of distance from its star, and is an example of a hot Jupiter, or possibly rather "warm Jupiter".

    <span class="mw-page-title-main">WASP-2b</span> Extrasolar planet in the constellation Delphinus

    WASP-2b is an extrasolar planet orbiting the star WASP-2 located about 500 light years away in the constellation of Delphinus. It was discovered via the transit method, and then follow up measurements using the radial velocity method confirmed that WASP-2b was a planet. The planet's mass and radius indicate that it is a gas giant with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, WASP-2b is located very close to its star, and belongs to the class of planets known as hot Jupiters. A 2008 study concluded that the WASP-2b system is a binary star system allowing even more accurate determination of stellar and planetary parameters.

    WASP-2 is a binary star system in the Delphinus constellation located about 500 light-years away. The primary is magnitude 12 orange dwarf star, orbited by red dwarf star on wide orbit. The star system shows an infrared excess noise of unknown origin.

    <span class="mw-page-title-main">WASP-8b</span> Planet orbiting a star in a binary system in the constellation of Sculptor

    WASP-8b is an exoplanet orbiting the star WASP-8A in the constellation of Sculptor. The star is similar to the Sun and forms a binary star with a red dwarf star (WASP-8B) of half the Sun's mass that orbits WASP-8A 4.5 arcseconds away. The system is 294 light-years away and is therefore located closer to Earth than many other star systems that are known to feature planets similar to WASP-8b. The planet and its parent star were discovered in the SuperWASP batch -6b to -15b. On 1 April 2008, Dr. Don Pollacco of Queen's University Belfast announced them at the RAS National Astronomy Meeting.

    <span class="mw-page-title-main">WASP-11b/HAT-P-10b</span> Extrasolar planet in the constellation Perseus

    WASP-11b/HAT-P-10b or WASP-11Ab/HAT-P-10Ab is an extrasolar planet discovered in 2008. The discovery was announced by press release by the SuperWASP project in April 2008 along with planets WASP-6b through to WASP-15b, however at this stage more data was needed to confirm the parameters of the planets and the coordinates were not given. On 26 September 2008, the HATNet Project's paper describing the planet which they designated HAT-P-10b appeared on the arXiv preprint server. The SuperWASP team's paper appeared as a preprint on the Extrasolar Planets Encyclopaedia on the same day, confirming that the two objects were in fact the same, and the teams agreed to use the combined designation.

    <span class="mw-page-title-main">WASP-15b</span> Extrasolar planet orbiting WASP-15

    WASP-15b, formally named Asye, is an extrasolar planet discovered in 2008 by the SuperWASP collaboration, which seeks to discover exoplanets that transit their host stars. The planet orbits its host star at a distance of 0.05 AU every four days. The mass of this planet is about one half that of Jupiter, but its radius is nearly 50% larger than Jupiter's, making the density of this planet only one quarter that of water; it is thought that some other form of heating must explain its extremely low density. WASP-15b's discovery was published on April 29, 2009.

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 January 2024, there are 5,576 confirmed exoplanets in 4,113 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.

    <span class="mw-page-title-main">WASP-43b</span> Extrasolar planet in the constellation Sextans

    WASP-43b, formally named Astrolábos, is a transiting planet in orbit around the young, active, and low-mass star WASP-43 in the constellation Sextans. The planet is a hot Jupiter with a mass twice that of Jupiter, but with a roughly equal radius. WASP-43b was flagged as a candidate by the SuperWASP program, before they conducted follow-ups using instruments at La Silla Observatory in Chile, which confirmed its existence and provided orbital and physical characteristics. The planet's discovery was published on April 14, 2011.

    WASP-43 is a K-type star about 284 light-years away in the Sextans constellation. It is about half the size of the Sun, and has approximately half the mass. WASP-43 has one known planet in orbit, a Hot Jupiter called WASP-43b. At the time of publishing of WASP-43b's discovery on April 15, 2011, the planet was the most closely orbiting Hot Jupiter discovered. The small orbit of WASP-43b is thought to be caused by WASP-43's unusually low mass. WASP-43 was first observed between January and May 2009 by the SuperWASP project, and was found to be cooler and slightly richer in metals than the Sun. WASP-43 has also been found to be an active star that rotates at a high velocity.

    WASP-24b is a Hot Jupiter detected in the orbit of the F-type star WASP-24. The planet is approximately the same size and mass of Jupiter, but it orbits at approximately 4% of the mean distance between the Earth and the Sun every two days. WASP-24b was observed by SuperWASP starting in 2008; after two years of observations, follow-ups led to the collection of the information that led to the planet's discovery.

    WASP-44b is a closely orbiting Jupiter-sized planet found in the orbit of the sunlike star WASP-44 by the SuperWASP program, which searches for transiting planets that cross in front of their host stars as seen from Earth. After follow-up observations using radial velocity, the planet was confirmed. Use of another telescope at the same observatory detected WASP-44 transiting its star. The planet completes an orbit around its star every two and a half days, and orbits at roughly 0.03 AU from its host star. WASP-44b's discovery was reported by the Royal Astronomical Society in May 2011.

    WASP-24 is an F-type star with the Hot Jupiter planet WASP-24b in orbit. WASP-24 is slightly larger and more massive than the Sun, it is also has a similar Metallicity and is hotter than the Sun. WASP-24 was first observed by the SuperWASP planet-searching organization, which flagged it as a potential host to a planet before following up with radial velocity and spectral measurements. Analysis of these confirmed the planetary nature of WASP-24b, which was later released to the public on the SuperWASP website.

    WASP-44 is a G-type star in the constellation Cetus that is orbited by the Jupiter-size planet WASP-44b. The star is slightly less massive and slightly smaller than the Sun; it is also slightly cooler, but is more metal-rich. The star was observed by SuperWASP, an organization searching for exoplanets, starting in 2009; manual follow-up observations used WASP-44's spectrum and measurements of its radial velocity led to the discovery of the transiting planet WASP-44b. The planet and its star were presented along with WASP-45b and WASP-46b on May 17, 2011 by a team of scientists testing the idea that hot Jupiters tend to have circular orbits, an assumption that is made when the orbital eccentricity of such planets are not well-constrained.

    HAT-P-32b is a planet orbiting the G-type or F-type star HAT-P-32, which is approximately 950 light years away from Earth. HAT-P-32b was first recognized as a possible planet by the planet-searching HATNet Project in 2004, although difficulties in measuring its radial velocity prevented astronomers from verifying the planet until after three years of observation. The Blendanal program helped to rule out most of the alternatives that could explain what HAT-P-32b was, leading astronomers to determine that HAT-P-32b was most likely a planet. The discovery of HAT-P-32b and of HAT-P-33b was submitted to a journal on 6 June 2011.

    The exoplanet naming convention is an extension of the system used for naming multiple-star systems as adopted by the International Astronomical Union (IAU). For exoplanets orbiting a single star, the name is normally formed by taking the name of its parent star and adding a lowercase letter. A provisional IAU-sanctioned standard exists to accommodate the naming of planets that orbit two stars, which are known as circumbinary planets. A limited number of exoplanets have IAU-sanctioned proper names. Other naming systems exist.

    BD-07 436, also known as WASP-77 since 2012, is a binary star system about 344 light-years away. The star's components appears to have a different age, with the secondary older than 9 billion years, while the primary's age is 5 billion years. The BD-07 436 system's concentration of heavy elements is similar to the Sun. Its stars display moderate chromospheric activity, including x-ray flares.

    References

    1. Brown, D. J. A.; et al. (24 Dec 2014). "Discovery of WASP-85Ab: a hot Jupiter in a visual binary system". arXiv: 1412.7761 [astro-ph.EP].