SAGE III on ISS

Last updated
SAGE III - ISS logo SAGE III on ISS logo.png
SAGE III – ISS logo

SAGE III on ISS is the fourth generation of a series of NASA Earth-observing instruments, known as the Stratospheric Aerosol and Gas Experiment. The first SAGE III instrument was launched on the Russian Meteor (satellite) spacecraft. The recently revised SAGE III will be mounted to the International Space Station where it will use the unique vantage point of ISS to make long-term measurements of ozone, aerosols, water vapor, and other gases in Earth's atmosphere.

Contents

History of the SAGE legacy

The first SAGE instrument was launched February 18, 1979, to collect data on the various gases in the atmosphere, including ozone. The data collected on SAGE I and the following instrument SAGE II, which began taking measurements in October 1984, were critical to the discovery of the Earth's ozone hole and the creation of 1987 Montreal Protocol, which banned ozone-depleting substances, such as chlorofluorocarbon (CFC).

SAGE III on ISS is a nearly exact replica of SAGE III Meteor-3M, sent into orbit in 2001 on a Russian satellite. SAGE III Meteor-3M went out of service in March 2006 when the satellite's power supply stopped working. The new instrument was built in anticipation of being attached to the space station in 2005. A change in ISS design, however, put those plans on hold. The instrument was stored in a Class 100 clean room in a sealed shipping container under a continuous gaseous nitrogen purge. The purge kept clean dry "air" inside the instrument.

Recently, the opportunity arose for SAGE III to be placed on ISS, and build on the long record of stratospheric gas data that its ancestors created. The week of February 14, 2011, scientists at NASA Langley Research Center pulled the instrument from storage to begin initial testing and calibrations in preparation prepping it for launch. [1]

SAGE III-ISS preparing for its scan of the moon February 17, 2011. The SAGE team arrived at midnight to continue testing the instrument, which will be attached to the space station to measure ozone, water vapor and aerosols in the Earth's atmosphere. Calibration.jpg
SAGE III-ISS preparing for its scan of the moon February 17, 2011. The SAGE team arrived at midnight to continue testing the instrument, which will be attached to the space station to measure ozone, water vapor and aerosols in the Earth's atmosphere.

Science behind SAGE III on ISS

The 76-kilogram (168 lb) [2] SAGE III instrument is a grating spectrometer that measures ultraviolet and visible energy. It relies upon the flight-proven designs used in the Stratospheric Aerosol Measurement (SAM I) and first and second SAGE instruments. The SAGE III design incorporates charge-coupled device (CCD) array detectors and a 16 bit A/D converter. Combined, these devices allow for wavelength calibration, a self-consistent determination of the viewing geometry, lunar occultation measurements, and expanded wavelength coverage.

The SAGE III sensor assembly consists of pointing and imaging subsystems and a UV/visible spectrometer. The pointing and imaging systems are employed to acquire light from either the Sun or Moon by vertically scanning across the object. The spectrometer uses an 800 element CCD linear array to provide continuous spectral coverage between 290 and 1030 nm. Additional aerosol information is provided by a discrete photodiode at 1550 nm. This configuration enables SAGE III to make multiple measurements of absorption features of target gaseous species and multi-wavelength measurements of broadband extinction by aerosols.

Atmospheric components studied by SAGE III on ISS

SAGE III Instrument SAGE III Instrument.jpg
SAGE III Instrument

The SAGE III mission is an important part of NASA's Earth Observation System and is designed to fulfill the primary scientific objective of obtaining high quality, global measurements of key components of atmospheric composition and their long-term variability. The primary focus of SAGE III on ISS will be to study aerosols, clouds, water vapor, pressure and temperature, nitrogen dioxide, nitrogen trioxide, and chlorine dioxide.

Aerosols

Aerosols play an essential role in the radiative and chemical processes that govern the Earth's climate. Since stratospheric aerosol loading has varied by a factor of 30 since 1979, long-term monitoring of tropospheric and stratospheric aerosols is crucial. SAGE III aerosol measurements will provide important contributions in the area of aerosol research.

Clouds

Clouds play a major role in determining the planet's solar and longwave energy balance and, thus, are important in governing the Earth's climate. SAGE III will provide measurements of mid and high level clouds including thin or "sub-visual" clouds that are not detectable by nadir-viewing passive remote sensors. These observations are important because while low clouds primarily reflect incoming solar radiation back into space (acting to cool the planet), mid and high level clouds enhance the "greenhouse effect" by trapping infrared radiation (acting to warm the planet). Also, the presence of thin cloud near the tropopause may play a significant role in heterogeneous chemical processes that lead to ozone destruction in mid-latitudes.

Water vapor

Water vapor is the dominant greenhouse gas and plays a crucial role in regulating the global climate system. An improved understanding of the global water vapor distribution can enhance our ability to understand water's role in climate processes. SAGE III water vapor measurements will provide important contributions on the long-term effect of this green house gas.

Ozone

From September 21 to 30, 2006, the average area of the ozone hole was the largest ever observed, at 10.6 million square miles (27.5 million square kilometres). This image, from September 24, the Antarctic ozone hole was equal to the record single-day largest area of 11.4 million square miles (29.5 million square kilometres), reached on Sept. 9, 2000. The blue and purple colors are where there is the least ozone, and the greens, yellows, and reds are where there is more ozone. NASA and NOAA Announce Ozone Hole is a Double Record Breaker.png
From September 21 to 30, 2006, the average area of the ozone hole was the largest ever observed, at 10.6 million square miles (27.5 million square kilometres). This image, from September 24, the Antarctic ozone hole was equal to the record single-day largest area of 11.4 million square miles (29.5 million square kilometres), reached on Sept. 9, 2000. The blue and purple colors are where there is the least ozone, and the greens, yellows, and reds are where there is more ozone.

Ozone research has remained at the forefront of atmospheric science for many years because stratospheric ozone shields the Earth's surface (and its inhabitants) from harmful ultraviolet radiation. Since recent declines in stratospheric ozone have been linked to human activity, accurate long-term measurements of ozone remain crucial.

It is important to monitor ozone levels in the lower stratosphere and upper troposphere since observed trends are the largest and most poorly understood at those altitudes. SAGE III's high vertical resolution and long-term stability make it uniquely well suited to make these measurements. SAGE III will also be able to look at the relationship between aerosol, cloud, and chemical processes affecting ozone argue for simultaneous measurements of these atmospheric constituents (such as those made by SAGE III).

Pressure and temperature

SAGE III temperature measurements will provide a unique data set for monitoring and understanding atmospheric temperature changes. In particular, the long-term stability and self-calibration capabilities of SAGE III may permit the detection of trends in stratospheric and mesospheric temperature that will be important diagnostics of climate change. SAGE III temperature measurements in the upper stratosphere and mesosphere will be a new source of long-term temperature measurements in this region of the atmosphere to complement existing long-term measurements made by satellites (MLS, ACE, SABER) and ground based lidar systems. SAGE III temperature measurements will also allow the monitoring of periodic temperature changes, such as those associated with the solar cycle and quasi-biennial oscillation, and the effects of radiative forcing by aerosols.

Nitrogen dioxide, nitrogen trioxide, and chlorine dioxide

Nitrogen dioxide (NO2), nitrogen trioxide (NO3), and chlorine dioxide (OClO) play crucial roles in stratospheric chemistry and the catalytic cycles that destroy stratospheric ozone. SAGE III NO2 measurements are important because the processes that occur in the Antarctic winter and spring and give rise to the ozone hole effectively convert NO2 to nitric acid (HNO3). Thus NO2 is an important diagnostic of ozone hole chemistry. Since it is measured during both solar and lunar occultation events, SAGE III observations of NO2 will improve our understanding of the strong diurnal (daily) cycles in stratospheric processes. In addition, SAGE III will make virtually unique measurements of nitrogen trioxide (NO3). Although it is short-lived in the presence of sunlight, NO3 plays an active role in the chemistry of other reactive nitrogen species such as NO2 and di-nitrogen pentoxide (N2O5) and, thus, indirectly in ozone chemistry. Since few other measurements of NO3 are available, SAGE III measurements, which are made during lunar occultation (nighttime) events, will provide crucial validation for our current understanding of reactive nitrogen chemistry.

Launch

Artist rendering of SpaceX Dragon spacecraft delivering cargo to the International Space Station Dragon ISS.jpg
Artist rendering of SpaceX Dragon spacecraft delivering cargo to the International Space Station

SAGE III was launched on the SpaceX CRS-10 mission using a Falcon 9 with Dragon. SAGE III traveled in the unpressurized trunk of Dragon, which launched on February 19, 2017. [3] Upon arrival, NASA used Dextre to berth the instrument onto an ExPRESS Logistics Carrier platform on the ISS. [4] [5]

International partners

NASA Langley Research Center, based out of Hampton, Virginia, is leading the SAGE III mission. Ball Aerospace & Technologies Corp. built the SAGE III-ISS instrument in Boulder, Colorado, and the European Space Agency and Thales Alenia Space, headquartered in France, are providing a hexapod to keep the instrument pointing in the right direction as the ISS maneuvers in space.

Notes

  1. Finneran, Michael (2011-03-03). "SAGE III - ISS prepped for space station". Physorg.com. Retrieved 8 January 2012.
  2. Svitak, Amy (2011-04-18). "After Years in Storage, Ozone Mapper Readied for 2014 Launch". SpaceNews.com. Archived from the original on October 8, 2011. Retrieved 8 January 2012.
  3. Clark, Stephen (31 October 2016). "SpaceX hopes procedure fix can allow Falcon 9 launches to resume". Spaceflight Now. NASA officials also expect SpaceX’s next resupply mission to the International Space Station to blast off around mid-January, at the soonest.
  4. Harding, Pete (2011-06-14). "Tech Demos: NASA preparing for full ISS utilization in post-Shuttle era". NASASpaceFlight.com (not affiliated with NASA). Retrieved 8 January 2012.
  5. "Time to Fly: SAGE III - ISS Prepped for Space Station". NASA. 2011-03-01. Retrieved 8 January 2012.

Related Research Articles

Satellite temperature measurements

Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.

Envisat Earth observation satellite launched by the ESA in 2002, still operating today

Envisat is a large inactive Earth-observing satellite which is still in orbit. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.

Atmosphere of Earth Gas layer surrounding Earth

The atmosphere of Earth is the layer of gases, commonly known as air, retained by Earth's gravity, surrounding the planet Earth and forming its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for liquid water to exist on the Earth's surface, absorbing ultraviolet solar radiation, warming the surface through heat retention, and reducing temperature extremes between day and night.

Radiative forcing Difference between solar irradiance absorbed by the Earth and energy radiated back to space

Radiative forcing is the change in energy flux in the atmosphere caused by natural and, or, anthropogenic factors of climate change as measured by watts / metre2. It is the scientific basis for the greenhouse effect on planets, and plays an important role in computational models of Earth's energy balance and climate. Changes to Earth's radiative equilibrium that cause temperatures to rise or fall over decadal periods are called climate forcings.

SCISAT-1 is a Canadian satellite designed to make observations of the Earth's atmosphere. Its main instruments are an optical Fourier transform infrared spectrometer, the ACE-FTS Instrument, and an ultraviolet spectrophotometer, MAESTRO. These devices record spectra of the Sun, as sunlight passes through the Earth's atmosphere, making analyses of the chemical elements of the atmosphere possible.

Upper Atmosphere Research Satellite NASA-operated orbital obserbatory

The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth's atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.

Earths energy budget

Earth's energy budget accounts for the balance between the energy that Earth receives from the Sun and the energy the Earth radiates back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also accounts for how energy moves through the climate system. Because the sun heats the equatorial tropics more than the polar regions, received solar irradiance is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things. The result is Earth's climate.

Scientific Assessment of Ozone Depletion

The Scientific Assessment of Ozone Depletion is a sequence of reports sponsored by WMO/UNEP. The most recent is the 2018 report. The reports were set up to inform the Montreal Protocol and amendments about ozone depletion.

TIMED

The TIMED mission is dedicated to study the influences energetics and dynamics of the Sun and humans on the least explored and understood region of Earth's atmosphere – the Mesosphere and Lower Thermosphere / Ionosphere (MLTI). The mission was launched from Vandenberg Air Force Base in California on 7 December 2001 aboard a Delta II rocket launch vehicle. The project is sponsored and managed by NASA, while the spacecraft was designed and assembled by the Applied Physics Laboratory at Johns Hopkins University. The mission has been extended several times, and has now collected data over an entire solar cycle, which helps in its goal to differentiate the Sun's effects on the atmosphere from other effects.

Index of meteorology articles Wikipedia index

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

Atmosphere of Mars Layer of gases surrounding planet Mars

The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.8%) and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen and noble gases. The atmosphere of Mars is much thinner than Earth's. The average surface pressure is only about 610 pascals (0.088 psi) which is less than 1% of the Earth's value. The currently thin Martian atmosphere prohibits the existence of liquid water at the surface of Mars, but many studies suggest that the Martian atmosphere was much thicker in the past. The highest atmospheric density on Mars is equal to the density found 35 km (22 mi) above the Earth's surface and is ~0.020 kg/m3. The atmosphere of Mars has been losing mass to space since the planet formed, and the leakage of gases still continues today.

Earth Radiation Budget Satellite

The Earth Radiation Budget Satellite (ERBS) was a NASA scientific research satellite within NASA's ERBE Research Program - a three-satellite mission, designed to investigate the Earth's radiation budget. It also carried an instrument that studied stratospheric aerosol and gases.

Atmospheric chemistry observational databases

Over the last two centuries many environmental chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.

Atmospheric infrared sounder

The atmospheric infrared sounder (AIRS) is one of six instruments flying on board NASA's Aqua satellite, launched on May 4, 2002. The instrument is designed to support climate research and improve weather forecasting.

SBUV/2

The Solar Backscatter Ultraviolet Radiometer, or SBUV/2, is a series of operational remote sensors on NOAA weather satellites in Sun-synchronous orbits which have been providing global measurements of stratospheric total ozone, as well as ozone profiles, since March 1985. The SBUV/2 instruments were developed from the SBUV experiment flown on the Nimbus-7 spacecraft which improved on the design of the original BUV instrument on Nimbus-4. These are nadir viewing radiometric instruments operating at mid to near UV wavelengths. SBUV/2 data sets overlap with data from SBUV and TOMS instruments on the Nimbus-7 spacecraft. These extensive data sets measure the density and vertical distribution of ozone in the Earth's atmosphere from six to 30 miles.

Greenhouse gas Gas in an atmosphere that absorbs and emits radiation within the thermal infrared range

A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (H
2
O
), carbon dioxide (CO
2
), methane (CH
4
), nitrous oxide (N
2
O
), and ozone (O3). Without greenhouse gases, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F). The atmospheres of Venus, Mars and Titan also contain greenhouse gases.

The Stratospheric Aerosol and Gas Experiment (SAGE) is a series of remote sensing satellite instruments used to study the chemical composition of earth's atmosphere. Specifically, SAGE has been used to study the Earth's ozone layer and aerosols at the troposphere through the stratosphere. The SAGE instruments use solar occultation measurement technique to determine chemical concentrations in the atmosphere. Solar occultation measurement technique measures sunlight through the atmosphere and ratios that measurement with a sunlight measurement without atmospheric attenuation. This is achieved by observing sunrises and sunsets during a satellite orbit. Physically, the SAGE instruments measure ultraviolet/visible energy and this is converted via algorithms to determine chemical concentrations. SAGE data has been used to study the atmospheres aerosols, ozone, water vapor, and other trace gases.

Paul O. Wennberg is the R. Stanton Avery Professor of Atmospheric Chemistry and Environmental Science and Engineering at the California Institute of Technology (Caltech). He is the director of the Ronald and Maxine Linde Center for Global Environmental Science. He is chair of the Total Carbon Column Observing Network and a founding member of the Orbiting Carbon Observatory project, which created NASA's first spacecraft for analysis of carbon dioxide in the atmosphere. He is also the principal investigator for the Mars Atmospheric Trace Molecule Occultation Spectrometer (MATMOS) to investigate trace gases in Mars's atmosphere.

Greenhouse gas monitoring

Greenhouse gas monitoring is the direct measurement of greenhouse gas emissions and levels. There are several different methods of measuring carbon dioxide concentrations in the atmosphere, including infrared analyzing and manometry. Methane and nitrous oxide are measured by other instruments. Greenhouse gases are measured from space such as by the Orbiting Carbon Observatory and networks of ground stations such as the Integrated Carbon Observation System.

Meteor-3M No.1

Meteor-3M No.1 was the first and only of the Meteor-3M series polar-orbiting weather satellites. It was launched on 10 December 2001 at 17:18:57 UTC from the Baikonur Cosmodrome in Kazakhstan. The satellite is in a sun-synchronous orbit with an ascending node time of about 9AM.

References