In cosmology, a Hubble volume (named for the astronomer Edwin Hubble) or Hubble sphere, Hubble bubble, subluminal sphere, causal sphere and sphere of causality is a spherical region of the observable universe surrounding an observer beyond which objects recede from that observer at a rate greater than the speed of light due to the expansion of the universe. [1] The Hubble volume is approximately equal to 1031 cubic light years (or about 1079 cubic meters).
The proper radius of a Hubble sphere (known as the Hubble radius or the Hubble length) is , where is the speed of light and is the Hubble constant. The surface of a Hubble sphere is called the microphysical horizon, [2] the Hubble surface, or the Hubble limit.
More generally, the term Hubble volume can be applied to any region of space with a volume of order . However, the term is also frequently (but mistakenly) used as a synonym for the observable universe; the latter is larger than the Hubble volume. [3] [4]
The center of the Hubble volume and observable universe is arbitrary in relation to the overall universe; instead it is centered around its origin (impersonal or personal "observer").
The Hubble length is 14.4 billion light years in the standard cosmological model, equivalent to times Hubble time. The Hubble time is the reciprocal of the Hubble constant, [5] and is slightly larger than the age of the universe (13.8 billion years) as it is the age the universe would have had if expansion was linear. [6]
For objects at the Hubble limit, the space between us and the object of interest has an average expansion speed of c. So, in a universe with constant Hubble parameter, light emitted at the present time by objects outside the Hubble limit would never be seen by an observer on Earth. That is, the Hubble limit would coincide with a cosmological event horizon (a boundary separating events visible at some time and those that are never visible [7] ). See Hubble horizon for more details.
However, the Hubble parameter is not constant in various cosmological models [3] so that the Hubble limit does not, in general, coincide with a cosmological event horizon. For example, in a decelerating Friedmann universe the Hubble sphere expands with time, and its boundary overtakes light emitted by more distant galaxies so that light emitted at earlier times by objects outside the Hubble volume still may eventually arrive inside the sphere and be seen by us. [3] Similarly, in an accelerating universe with a decreasing Hubble constant, the Hubble volume expands with time and can overtake light from sources previously receding relative to us. [3] In both of these circumstances, the cosmological event horizon lies beyond the Hubble Horizon. In a universe with an increasing Hubble constant, the Hubble horizon will contract, and its boundary overtakes light emitted by nearer galaxies so that light emitted at earlier times by objects inside the Hubble sphere will eventually recede outside the sphere and will never be seen by us. [1] If the shrinkage of the Hubble volume does not stop due to some yet unknown phenomenon (one suggestion is the "early phase transition"), the Hubble volume will become nearly a point (due to the uncertainty principle pure singularities are impossible; also a proportion of their self-interactions are energetic enough to produce escaping particles via quantum tunneling), meeting the criteria of big bang.[ citation needed ] The justification of this view is that no subluminal Hubble volume will exist and pointwise superluminal expansion (the generalization of the Big Bang theory) will prevail everywhere or at least in a vast region of the universe. In this cyclic cosmology (there are many other cyclic versions) the universe always expands and does not revert to a smaller default size (non-conformal or expandatory conformal, non-Penrosean expandatory cyclic cosmology).[ citation needed ]
Observations indicate that the expansion of the universe is accelerating, [8] and the Hubble constant is thought to be decreasing. [9] Thus, sources of light outside the Hubble horizon but inside the cosmological event horizon can eventually reach us. A fairly counter-intuitive result is that photons we observe from the first ~5 billion years of the universe come from regions that are, and always have been, receding from us at superluminal speeds. [3]
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. It was first proposed as a physical theory in 1931 by Roman Catholic priest and physicist Georges Lemaître when he suggested the universe emerged from a "primeval atom". Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments.
The Doppler effect is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach, identical at the instant of passing by, and lower during the recession.
Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation. The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect, and gravitational potentials, which gravitationally redshift escaping radiation. All sufficiently distant light sources show cosmological redshift corresponding to recession speeds proportional to their distances from Earth, a fact known as Hubble's law that implies the universe is expanding.
Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.
In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe, giving a distance that does not change in time due to the expansion of space. Proper distance roughly corresponds to where a distant object would be at a specific moment of cosmological time, which can change over time due to the expansion of the universe. Comoving distance and proper distance are defined to be equal at the present time. At other times, the Universe's expansion results in the proper distance changing, while the comoving distance remains constant.
In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase. According to the standard model of cosmology, the scale factor of the universe is accelerating, and, in the future era of cosmological constant dominance, will increase exponentially. However, this expansion is similar for every moment of time, and is characterized by an unchanging, small Hubble constant, effectively ignored by any bound material structures. By contrast, in the Big Rip scenario the Hubble constant increases to infinity in a finite time.
The observable universe is a ball-shaped region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe. That number was reduced in 2021 to several hundred billion based on data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.
The particle horizon is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.
A de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominated by the cosmological constant, thought to correspond to dark energy in our universe or the inflaton field in the early universe. According to the models of inflation and current observations of the accelerating universe, the concordance models of physical cosmology are converging on a consistent model where our universe was best described as a de Sitter universe at about a time = 10−33 s after the fiducial Big Bang singularity, and far into the future.
The horizon problem is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regions of space in the absence of a mechanism that sets the same initial conditions everywhere. It was first pointed out by Wolfgang Rindler in 1956.
Tired light is a class of hypothetical redshift mechanisms that was proposed as an alternative explanation for the redshift-distance relationship. These models have been proposed as alternatives to the models that involve the expansion of the universe. The concept was first proposed in 1929 by Fritz Zwicky, who suggested that if photons lost energy over time through collisions with other particles in a regular way, the more distant objects would appear redder than more nearby ones.
The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, this is a key parameter of the Friedmann equations.
Phantom energy is a hypothetical form of dark energy satisfying the equation of state with . It possesses negative kinetic energy, and predicts expansion of the universe in excess of that predicted by a cosmological constant, which leads to a Big Rip. The idea of phantom energy is often dismissed, as it would suggest that the vacuum is unstable with negative mass particles bursting into existence. The concept is hence tied to emerging theories of a continuously created negative mass dark fluid, in which the cosmological constant can vary as a function of time.
A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons.
Recessional velocity is the rate at which an extragalactic astronomical object recedes from an observer as a result of the expansion of the universe. It can be measured by observing the wavelength shifts of spectral lines emitted by the object, known as the object's cosmological redshift.
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.
Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity to another quantity that is not directly observable, but is more convenient for calculations. The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift.
In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.