Wright Mons

Last updated

Wright Mons
Pluto possible cryovolcano - Wright Mons.jpg
New Horizons image of Wright Mons, its central caldera-like feature, and the surrounding hummocky terrain of Hyecho Palus
Feature typeMountain, cryovolcano
LocationHyecho Palus, Tombaugh Regio, Pluto
Coordinates 21°22′S173°14′E / 21.36°S 173.24°E / -21.36; 173.24 [1]
Diameter~150 km (93.2 mi) [2]
Peak4.7 ± 1 km (2.9 ± 0.62 mi) (base to crest) [3]
Discoverer New Horizons
Eponym Wright brothers

Wright Mons is a large, roughly circular mountain and likely cryovolcano [4] on the dwarf planet Pluto. Discovered by the New Horizons spacecraft in 2015, it is located southwest of Sputnik Planitia within Hyecho Palus, adjacent to the Tenzing Montes and Belton Regio. A relatively young geological feature, Wright Mons has attracted attention as one of the most apparent examples of recent geological activity on Pluto and borders numerous other similarly young features. Numerous semi-regular hills surround and partially construct the flanks of Wright Mons. Their nature remains unexplained, with few, if any, direct analogs elsewhere in the Solar System. [3] :431

Contents

Discovery and naming

On 14 July 2015, the New Horizons spacecraft conducted a flyby of the Pluto system, resolving surface features on Pluto for the first time. Wright Mons was soon after informally named by the New Horizons team after American aviation pioneers Orville and Wilbur Wright. On 30 May 2019, Wright Mons was approved as the official name of the feature by the International Astronomical Union (IAU). [1]

Geography

An enhanced-color view of Pluto with Wright Mons's location marked PIA20361-Pluto-WrightMons-20150714.jpg
An enhanced-color view of Pluto with Wright Mons's location marked

Wright Mons is located in Pluto's southern hemisphere [1] within the roughly 400 by 700 kilometer-wide (250 by 435 miles-wide) Hyecho Palus, a walled low-lying plain and one of the lowest-altitude regions on Pluto. Situated between two major features, Sputnik Planitia to the northeast and Belton Regio to the west, Wright Mons directly borders the tallest blocks of the Tenzing Montes directly to its northeast. The region around Wright Mons and Hyecho Palus is heavily tectonized, appearing to participate in the massive ridge-trough system (RTS), a tectonic complex that is Pluto's oldest large-scale feature identified and cuts a north–south great circle around most of Pluto's observed regions. [3] :422,425 [a]

Structure and geology

Topography map of Wright Mons (top) and Piccard Mons (bottom) PIA20050-Pluto-IceVolcanoes-20151110.jpg
Topography map of Wright Mons (top) and Piccard Mons (bottom)

Wright Mons's edifice is roughly annular in shape, at approximately 150 kilometers (93 mi) in diameter, [2] and is likely composed primarily of water ice. It stands roughly 3.5–4.7 km (2.2–2.9 mi) above Hyecho Palus with a ~45 km (28 mi) wide central depression that stretches some 3.5–4.5 km (2.2–2.8 mi) below Wright Mons's summit. [3] :425 Two subsidiary peaks mark the summit rim, one roughly circular mound north of the central depression and another to the southwest. [5]

Wright Mons's relatively shallow flanks are largely dominated by a dense network of hummocks, or hills, each roughly 10 to 15 kilometers (6.2 to 9.3 mi) in diameter and 200 to 600 meters (656 to 1,970 ft) high. [3] :425 [6] The approximately conical central depression has a roughly flat floor which reaches nearly, if not as low as the plains surrounding Wright Mons. The central depression is ringed by concentric topographical fabric, or small textured ridges, possibly originating from a summit collapse or from superficial emplacement, and a series of radial trenches mark the central depression wall. Wright Mons's eastern flank is intersected by a north–south fault which displaces the eastern section downwards relative to the western section, resulting in a height asymmetry of the mountain. [5] Only one probable impact crater has been identified on Wright Mons's edifice, indicating that Wright Mons is likely younger than one billion years old. [7]

Hummocky terrain

Wright Mons is surrounded by an unusual and unique type of terrain informally termed hummocky terrain, characterized by semi-regular mounds and hills of unclear origin. Much of Hyecho Palus is covered by hummocky terrain, but the hummocky terrain is most apparent adjacent to and partially on Wright Mons's edifice, though it appears to fade to rougher terrain to the south around neighboring Piccard Mons. [3] :426 The hummocky terrain may be related to the formation and geological history of Wright Mons and other similar nearby mountains, and has been compared to the funiscular terrain on the south pole of Saturn's moon Enceladus. [4] [8]

Cryovolcanism

Soon after Wright Mons's discovery, its young surface and resemblance to terrestrial volcanoes prompted speculation that it could be a cryovolcanic structure, [9] [10] formed from erupted volatile material termed cryolava . However, its unusual structure has made it difficult to determine how Wright Mons formed, and it remains controversial as to what eruptive processes created Wright Mons. The resemblance of the central pit to summit calderas led to early speculation that Wright Mons may have been constructed in a similar manner to individual large volcanoes of the inner planets, erupting cryolava from a single central vent. [4] Wright Mons has also been compared to terrestrial mud volcanoes, with a hypothesis proposing that subsurface mud-like slurry could be forced up due to density differences in seasonally-deposited layers on Pluto's surface. Models of this type of cryovolcanism construct a Wright Mons-sized structure within 1–10 million years. [11] The unusual hummocks have been proposed as forming from rapidly cooled cryolava, similar to pillow lava, or from compression in a manner similar to pāhoehoe lava. [4] The sinuous radial trenches in Wright Mons's central depression appear to follow the steepest topographical gradient, and as such have been noted as potential cryolava flow channels, but this identification remains uncertain. [5]

However, Wright Mons's edifice lacks any identifiable lateral flow features or fallout from any hypothetical explosive eruptions. The numerous hummocks that rise on Wright Mons's flanks have been noted as appearing similar to overlapping dacite and andesite lava domes on Earth, [3] :431 and the two subsidiary summits appear to have been emplaced superficially on Wright Mons's edifice. [5] A more recent hypothesis, proposed by a team of planetary scientists in 2022, suggests that a sequence of dome-forming eruptions merged to form the edifice of Wright Mons and that the caldera-like depression is coincidental, with the eruptions possibly occurring in multiple episodes. Nearby Coleman Mons has been proposed as an analogous, isolated example of the tentative domes which may construct Wright Mons's edifice. [4]

Wright Mons is a part of a putative cryovolcanic field, bordering two other major probable cryovolcanic structures, Piccard Mons and Coleman Mons. Hyecho Palus is marked by other irregular depressions, some of which are located atop smaller topographical edifices; as a result, Hyecho Palus is interpreted by some planetary geologists as a cryovolcanic plain or province. [3] :422,426 [12]

See also

Notes

  1. The RTS is several hundreds of kilometers wide and roughly traces the 155° meridian, grazing and partially intersecting the western edge of the Sputnik Planitia basin. The RTS appears to terminate near Pluto's north pole, whilst it continues beyond the imaged regions to the south. [3] :400,422

Related Research Articles

<span class="mw-page-title-main">Cryovolcano</span> Type of volcano that erupts volatiles such as water, ammonia or methane, instead of molten rock

A cryovolcano is a type of volcano that erupts gases and volatile material such as liquid water, ammonia, and hydrocarbons. The erupted material is collectively referred to as cryolava; it originates from a reservoir of subsurface cryomagma. Cryovolcanic eruptions can take many forms, such as fissure and curtain eruptions, effusive cryolava flows, and large-scale resurfacing, and can vary greatly in output volumes. Immediately after an eruption, cryolava quickly freezes, constructing geological features and altering the surface.

<span class="mw-page-title-main">Geology of Pluto</span> Geologic structure and composition of Pluto

The geology of Pluto consists of the characteristics of the surface, crust, and interior of Pluto. Because of Pluto's distance from Earth, in-depth study from Earth is difficult. Many details about Pluto remained unknown until 14 July 2015, when New Horizons flew through the Pluto system and began transmitting data back to Earth. When it did, Pluto was found to have remarkable geologic diversity, with New Horizons team member Jeff Moore saying that it "is every bit as complex as that of Mars". The final New Horizons Pluto data transmission was received on 25 October 2016. In June 2020, astronomers reported evidence that Pluto may have had a subsurface ocean, and consequently may have been habitable, when it was first formed.

<span class="mw-page-title-main">Belton Regio</span> Equatorial dark region on Pluto

Belton Regio is a prominent surface feature of the dwarf planet Pluto. It is an elongated dark region along Pluto's equator, 2,990 km (1,860 mi) long and one of the darkest features on its surface.

<span class="mw-page-title-main">Mordor Macula</span> North polar dark region on Charon

Mordor Macula is the informal name for a large dark area about 475 km in diameter near the north pole of Charon, Pluto's largest moon. It is named after the black land called Mordor in J.R.R. Tolkien's The Lord of the Rings.

<span class="mw-page-title-main">Geology of Charon</span> Geologic structure and composition of Charon

The geology of Charon encompasses the characteristics of the surface, crust, and interior of Pluto's moon Charon. Like the geology of Pluto, almost nothing was known of Charon's geology until the New Horizons of the Pluto system on 14 July 2015. Charon's diameter is 1,208 km (751 mi)—just over half that of Pluto. Charon is sufficiently massive to have collapsed into a spheroid under its own gravity.

<span class="mw-page-title-main">Tenzing Montes</span> Blocky mountain range on Pluto

The Tenzing Montes are a range of icy mountains on Pluto, bordering the southwest region of Sputnik Planitia and the nearby Hillary Montes and Wright Mons. With peaks reaching 6.2 km in height, they are the highest mountain range on Pluto, and also the steepest, with a mean slope of 19.2 degrees.

<span class="mw-page-title-main">Sputnik Planitia</span> Glaciated basin on Pluto

Sputnik Planitia is a large, partially glaciated basin on Pluto. About 1,400 by 1,200 km in size, Sputnik Planitia is partially submerged in large, bright glaciers of nitrogen ice. Named after Earth's first artificial satellite, Sputnik 1, it constitutes the western lobe of the heart-shaped Tombaugh Regio. Sputnik Planitia lies mostly in the northern hemisphere, but extends across the equator. Much of it has a surface of irregular polygons separated by troughs, interpreted as convection cells in the relatively soft nitrogen ice. The polygons average about 33 km (21 mi) across. In some cases troughs are populated by blocky mountains or hills, or contain darker material. There appear to be windstreaks on the surface with evidence of sublimation. The dark streaks are a few kilometers long and all aligned in the same direction. The planitia also contains pits apparently formed by sublimation. No craters were detectable by New Horizons, implying a surface less than 10 million years old. Modeling sublimation pit formation yields a surface age estimate of 180000+90000
−40000
years. Near the northwest margin is a field of transverse dunes, spaced about 0.4 to 1 km apart, that are thought to be composed of 200-300 μm diameter particles of methane ice derived from the nearby Al-Idrisi Montes.

<span class="mw-page-title-main">Hillary Montes</span> Blocky mountain range on Pluto

The Hillary Montes or are a mountain range that reach 3.5 km above the surface of the dwarf planet Pluto. They are located northwest of Tenzing Montes in the southwest border area of Sputnik Planitia in the south of Tombaugh Regio. The Hillary Montes were first viewed by the New Horizons spacecraft on 14 July 2015, and announced by NASA on 24 July 2015.

Challenger Colles is a range of hills on Pluto near the eastern edge of Sputnik Planitia. Discovered by the New Horizons team in July 2015, It is named in honor of the Space Shuttle Challenger, which was destroyed with all seven crew lost on January 28, 1986. The name Challenger Colles was officially approved by the International Astronomical Union on May 27, 2022.

<span class="mw-page-title-main">Vulcan Planitia</span> Major plain on Charon

Vulcan Planitia, or Vulcan Planum, is the unofficial name given to a large plain on the southern hemisphere of Pluto's moon Charon. It discovered by New Horizons during its flyby of Pluto in July 2015. It is named after the fictional planet Vulcan in the science-fiction series Star Trek. The name is not approved by International Astronomical Union (IAU) as of 2024.

<span class="mw-page-title-main">Burney (crater)</span> Multi-ring impact basin on Pluto

Burney is the second-largest known impact basin on the dwarf planet Pluto. With a diameter of over 290 kilometres and possibly up to 350 kilometres, it is the second-largest known impact basin on Pluto, after the Sputnik Planitia basin. Burney is the only known impact basin on Pluto with visible multiple rims and is thus classified as a multi-ringed impact basin, though its rings have been heavily eroded due to Burney's age.

<span class="mw-page-title-main">Caleuche Chasma</span> Major chasm on Charon

Caleuche Chasma is a Y-shaped chasma on Pluto's moon, Charon. Caleuche Chasma is 400 km (250 mi) long. The feature was discovered using stereoscopic processing of New Horizons images. At approximately 13 km (8.1 mi) deep, it is the deepest known feature on the natural satellite, and one of the deepest known canyons in the Solar System.

<span class="mw-page-title-main">Leviathan Patera</span> Caldera on Triton

Leviathan Patera is a major cryovolcanic caldera on Neptune's largest moon Triton. Discovered by the Voyager 2 spacecraft in 1989, Leviathan Patera is located in Monad Regio and within Cipango Planum's western regions. Leviathan Patera is approximately 80 kilometres in diameter and may be the center of one of the largest cryovolcanic or volcanic edifices in the Solar System.

<span class="mw-page-title-main">Geology of Triton</span> Geologic structure and composition of Triton

The geology of Triton encompasses the physical characteristics of the surface, internal structure, and geological history of Neptune's largest moon Triton. With a mean density of 2.061 g/cm3, Triton is roughly 15-35% water ice by mass; Triton is a differentiated body, with an icy solid crust atop a probable subsurface ocean and a rocky core. As a result, Triton's surface geology is largely driven by the dynamics of water ice and other volatiles such as nitrogen and methane. Triton's geology is vigorous, and has been and continues to be influenced by its unusual history of capture, high internal heat, and its thin but significant atmosphere.

<span class="mw-page-title-main">Tuonela Planitia</span> Walled plain on Triton

Tuonela Planitia is an elongated plain and probable cryolava lake on Neptune's moon Triton. Located in Triton's northern hemisphere within Monad Regio, it overlies part of Triton's unusual cantaloupe terrain. As with neighboring Ruach Planitia and the other walled plains on Triton, Tuonela Planitia is among the youngest features on Triton's surface.

<span class="mw-page-title-main">Ruach Planitia</span> Walled plain on Triton

Ruach Planitia is a roughly circular flat plain and probable cryolava lake on Neptune's moon Triton. It is located in Triton's northern hemisphere within Monad Regio and directly borders the cryovolcanic plains of Cipango Planum to the east and Tuonela Planitia to the west. Ruach Planitia, along with the other three walled plains of Triton, is one of the youngest and flattest features observed on the moon.

Piccard Mons is a large, roughly circular mountain and likely cryovolcano on the dwarf planet Pluto. Discovered by the New Horizons spacecraft in 2015, it is located southeast of Wright Mons within the Tombaugh Regio, adjacent to the Safronov Regio and Elcano Montes.

References

  1. 1 2 3 "Wright Mons". Gazetteer of Planetary Nomenclature. USGS Astrogeology Research Program. (Center Latitude: -21.36°, Center Longitude: 173.24°; Planetocentric, +East)
  2. 1 2 White, Oliver L.; Moore, Jeffrey M.; McKinnon, William B.; Spencer, John R.; Howard, Allen D.; Schenk, Paul M.; Beyer, Ross A.; Nimmo, Francis; Singer, Kelsi N.; Umurhan, Orkan M.; Stern, S. Alan; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; Cheng, Andrew F.; Bertrand, Tanguy; Binzel, Richard P.; Earle, Alissa M.; Grundy, Will M.; Lauer, Tod R.; Protopapa, Silvia; Robbins, Stuart J.; Schmitt, Bernard (May 2017). "Geological mapping of Sputnik Planitia on Pluto". Icarus. 287: 261–268. Bibcode:2017Icar..287..261W. doi:10.1016/j.icarus.2017.01.011.
  3. 1 2 3 4 5 6 7 8 9 Schenk, P. M.; Beyer, R. A.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; White, O. L.; Singer, K.; Nimmo, F.; Thomason, C.; Lauer, T. R.; Robbins, S.; Umurhan, O. M.; Grundy, W. M.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Smith, K. E.; Olkin, C. (November 2018). "Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons". Icarus. 314: 400–433. Bibcode:2018Icar..314..400S. doi:10.1016/j.icarus.2018.06.008. S2CID   126273376.
  4. 1 2 3 4 5 Singer, Kelsi N.; White, Oliver L.; Schmitt, Bernard; et al. (March 2022). "Large-scale cryovolcanic resurfacing on Pluto". Nature Communications. 13 (1): 1542. arXiv: 2207.06557 . Bibcode:2022NatCo..13.1542S. doi:10.1038/s41467-022-29056-3. PMC   8964750 . PMID   35351895.
  5. 1 2 3 4 Martin, Craig R.; Binzel, Richard P. (March 2021). "Ammonia-water freezing as a mechanism for recent cryovolcanism on Pluto". Icarus. 356. Bibcode:2021Icar..35613763M. doi: 10.1016/j.icarus.2020.113763 .
  6. Howard, Alan D.; Moore, Jeffrey M.; Umurhan, Orkan M.; White, Oliver L.; Singer, Kelsi N.; Schenk, Paul M. (November 2023). "Are the surface textures of Pluto's Wright Mons and its surroundings exogenic?". Icarus. 405. Bibcode:2023Icar..40515719H. doi:10.1016/j.icarus.2023.115719.
  7. White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Young, L. A.; Cheng, A. F. (June 2016). Geological Mapping of the Encounter Hemisphere on Pluto (PDF). Annual Planetary Geologic Mappers Meeting. Flagstaff, Arizona. Bibcode:2016LPICo1920.7001W. 7001. Retrieved 17 March 2024.
  8. McKinnon, William B.; Glein, Christopher R.; Bertrand, Tanguy; Rhoden, Alyssa R. (27 November 2020). "Formation, Composition, and History of the Pluto System: A Post-New Horizons Synthesis". The Pluto System After New Horizons. p. 1. arXiv: 2011.14030 . doi:10.2458/azu_uapress_9780816540945-ch022. ISBN   978-0-8165-4094-5.
  9. "At Pluto, New Horizons Finds Geology of All Ages, Possible Ice Volcanoes, Insight into Planetary Origins". New Horizons News Center. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Retrieved 9 November 2015.
  10. Witze, A. (9 November 2015). "Icy volcanoes may dot Pluto's surface". Nature. Nature Publishing Group. doi:10.1038/nature.2015.18756. S2CID   182698872 . Retrieved 9 November 2015.
  11. Ahrens, C. J. (November 2020). "Modeling cryogenic mud volcanism on Pluto". Journal of Volcanology and Geothermal Research. 406. Bibcode:2020JVGR..40607070A. doi: 10.1016/j.jvolgeores.2020.107070 .
  12. Singer, K. N.; White, O. L.; Schenk, P. M.; et al. (June 2016). Pluto's Putative Cryovolcanic Constructs (PDF). Annual Planetary Geologic Mappers Meeting. Flagstaff, Arizona. Bibcode:2016LPICo1920.7017S. 7017. Retrieved 19 March 2024.