Luna Linea

Last updated

Luna Linea
Pluto-Map-Annotated.jpg
Annotated map of the surface features of Pluto as viewed by New Horizons . Luna Linea is in the far left side of the map.
Feature typeDark linear feature
LocationAnti-encounter hemisphere, Pluto
Coordinates 19°53′N22°47′E / 19.88°N 22.78°E / 19.88; 22.78 [1]
Length~220 km [1] [a]
Discoverer New Horizons
Eponym Luna program, first spacecraft to visit the Moon

Luna Linea is a dark linear feature (linea) on the dwarf planet Pluto. It was discovered by the New Horizons craft in July 2015 and named after the Luna program, a Soviet space exploration program that was the first to visit the Moon. The name was officially approved by the International Astronomical Union (IAU) on 11 April 2023. [1]

Contents

Geology

Pluto's far side as imaged by the New Horizons spacecraft on approach to Pluto. Luna Linea extends across the lower right Pluto by LORRI, 11 July 2015.jpg
Pluto's far side as imaged by the New Horizons spacecraft on approach to Pluto. Luna Linea extends across the lower right

As Luna Linea was located on the opposite hemisphere (informally referred to as the far side or anti-encounter hemisphere) of Pluto when New Horizons was at closest approach, it was not imaged in detail. Nevertheless, Luna Linea is located in a region with several other linear dark features, including Chandrayaan Linea and Yutu Linea. The concentration of these linear features on Pluto's far side may relate to the ridge-trough system (RTS), a massive band of tectonized terrain which extends north to south across much of Pluto's encounter hemisphere. However, the alignment of Luna Linea and the other lineae does not appear to support this. Alternatively, the dark lineae may represent a region of disrupted terrain that formed due to the impact event which created Sputnik Planitia, as seismic energy from the impact may have concentrated at Sputnik Planitia's antipode, fracturing Pluto's crust. Luna Linea may be an eastern outlier of this antipodal terrain, or it may have formed by unrelated means. [2]

See also

Notes

  1. The length of Luna Linea is listed under "diameter" in the Gazetteer of Planetary Nomenclature database.

Related Research Articles

<span class="mw-page-title-main">Utopia Planitia</span> Impact basin on Mars

Utopia Planitia is a large plain within Utopia, the largest recognized impact basin on Mars and in the Solar System with an estimated diameter of 3,300 km (2,100 mi). It is the Martian region where the Viking 2 lander touched down and began exploring on September 3, 1976, and the Zhurong rover touched down on May 14, 2021, as a part of the Tianwen-1 mission. It is located at the antipode of Argyre Planitia, centered at 46.7°N 117.5°E. It is also in the Casius quadrangle, Amenthes quadrangle, and the Cebrenia quadrangle of Mars. The region is in the broader North Polar/Borealis Basin that covers most of the Northern Hemisphere of Mars.

<span class="mw-page-title-main">Hellas Planitia</span> Plantia on Mars

Hellas Planitia is a plain located within the huge, roughly circular impact basin Hellas located in the southern hemisphere of the planet Mars. Hellas is the fourth- or fifth-largest known impact crater in the Solar System. The basin floor is about 7,152 m (23,465 ft) deep, 3,000 m (9,800 ft) deeper than the Moon's South Pole-Aitken basin, and extends about 2,300 km (1,400 mi) east to west. It is centered at 42.4°S 70.5°E. It features the lowest point on Mars, serves as a known source of global dust storms, and may have contained lakes and glaciers. Hellas Planitia spans the boundary between the Hellas quadrangle and the Noachis quadrangle.

<span class="mw-page-title-main">Cryovolcano</span> Type of volcano that erupts volatiles such as water, ammonia or methane, instead of molten rock

A cryovolcano is a type of volcano that erupts gases and volatile material such as liquid water, ammonia, and hydrocarbons. The erupted material is collectively referred to as cryolava; it originates from a reservoir of subsurface cryomagma. Cryovolcanic eruptions can take many forms, such as fissure and curtain eruptions, effusive cryolava flows, and large-scale resurfacing, and can vary greatly in output volumes. Immediately after an eruption, cryolava quickly freezes, constructing geological features and altering the surface.

<span class="mw-page-title-main">Geology of Pluto</span> Geologic structure and composition of Pluto

The geology of Pluto consists of the characteristics of the surface, crust, and interior of Pluto. Because of Pluto's distance from Earth, in-depth study from Earth is difficult. Many details about Pluto remained unknown until 14 July 2015, when New Horizons flew through the Pluto system and began transmitting data back to Earth. When it did, Pluto was found to have remarkable geologic diversity, with New Horizons team member Jeff Moore saying that it "is every bit as complex as that of Mars". The final New Horizons Pluto data transmission was received on 25 October 2016. In June 2020, astronomers reported evidence that Pluto may have had a subsurface ocean, and consequently may have been habitable, when it was first formed.

<span class="mw-page-title-main">Chaos terrain</span> Distinctive area of broken or jumbled terrain

In astrogeology, chaos terrain, or chaotic terrain, is a planetary surface area where features such as ridges, cracks, and plains appear jumbled and enmeshed with one another. Chaos terrain is a notable feature of the planets Mars and Mercury, Jupiter's moon Europa, and the dwarf planet Pluto. In scientific nomenclature, "chaos" is used as a component of proper nouns.

<span class="mw-page-title-main">Tombaugh Regio</span> Bright region on Pluto

Tombaugh Regio, sometimes nicknamed "Pluto's heart" after its shape, is the largest bright surface feature of the dwarf planet Pluto. It lies just north of Pluto's equator, to the northeast of Belton Regio and to the northwest of Safronov Regio, which are both dark features. Its western lobe, a 1,000 km (620 mi)-wide plain of nitrogen and other ices lying within a basin, is named Sputnik Planitia. The eastern lobe consists of high-albedo uplands thought to be coated by nitrogen transported through the atmosphere from Sputnik Planitia, and then deposited as ice. Some of this nitrogen ice then returns to Sputnik Planitia via glacial flow. The region is named after Clyde Tombaugh, the discoverer of Pluto.

<span class="mw-page-title-main">Belton Regio</span> Equatorial dark region on Pluto

Belton Regio is a prominent surface feature of the dwarf planet Pluto. It is an elongated dark region along Pluto's equator, 2,990 km (1,860 mi) long and one of the darkest features on its surface.

<span class="mw-page-title-main">Mordor Macula</span> North polar dark region on Charon

Mordor Macula is the informal name for a large dark area about 475 km in diameter near the north pole of Charon, Pluto's largest moon. It is named after the black land called Mordor in J.R.R. Tolkien's The Lord of the Rings.

<span class="mw-page-title-main">Geology of Charon</span> Geologic structure and composition of Charon

The geology of Charon encompasses the characteristics of the surface, crust, and interior of Pluto's moon Charon. Like the geology of Pluto, almost nothing was known of Charon's geology until the New Horizons of the Pluto system on 14 July 2015. Charon's diameter is 1,208 km (751 mi)—just over half that of Pluto. Charon is sufficiently massive to have collapsed into a spheroid under its own gravity.

<span class="mw-page-title-main">Geography of Pluto</span>

The geography of Pluto refers to the study and mapping of physical features across the dwarf planet Pluto. On 14 July 2015, the New Horizons spacecraft became the first spacecraft to fly by Pluto. During its brief flyby, New Horizons made detailed geographical measurements and observations of Pluto and its moons.

<span class="mw-page-title-main">Tenzing Montes</span> Blocky mountain range on Pluto

The Tenzing Montes are a range of icy mountains on Pluto, bordering the southwest region of Sputnik Planitia and the nearby Hillary Montes and Wright Mons. With peaks reaching 6.2 km in height, they are the highest mountain range on Pluto, and also the steepest, with a mean slope of 19.2 degrees.

<span class="mw-page-title-main">Sputnik Planitia</span> Glaciated basin on Pluto

Sputnik Planitia is a large, partially glaciated basin on Pluto. About 1,400 by 1,200 km in size, Sputnik Planitia is partially submerged in large, bright glaciers of nitrogen ice. Named after Earth's first artificial satellite, Sputnik 1, it constitutes the western lobe of the heart-shaped Tombaugh Regio. Sputnik Planitia lies mostly in the northern hemisphere, but extends across the equator. Much of it has a surface of irregular polygons separated by troughs, interpreted as convection cells in the relatively soft nitrogen ice. The polygons average about 33 km (21 mi) across. In some cases troughs are populated by blocky mountains or hills, or contain darker material. There appear to be windstreaks on the surface with evidence of sublimation. The dark streaks are a few kilometers long and all aligned in the same direction. The planitia also contains pits apparently formed by sublimation. No craters were detectable by New Horizons, implying a surface less than 10 million years old. Modeling sublimation pit formation yields a surface age estimate of 180000+90000
−40000
years. Near the northwest margin is a field of transverse dunes, spaced about 0.4 to 1 km apart, that are thought to be composed of 200-300 μm diameter particles of methane ice derived from the nearby Al-Idrisi Montes.

Challenger Colles is a range of hills on Pluto near the eastern edge of Sputnik Planitia. Discovered by the New Horizons team in July 2015, It is named in honor of the Space Shuttle Challenger, which was destroyed with all seven crew lost on January 28, 1986. The name Challenger Colles was officially approved by the International Astronomical Union on May 27, 2022.

<span class="mw-page-title-main">Vulcan Planitia</span> Major plain on Charon

Vulcan Planitia, or Vulcan Planum, is the unofficial name given to a large plain on the southern hemisphere of Pluto's moon Charon. It discovered by New Horizons during its flyby of Pluto in July 2015. It is named after the fictional planet Vulcan in the science-fiction series Star Trek. The name is not approved by International Astronomical Union (IAU) as of 2024.

<span class="mw-page-title-main">Wright Mons</span> Mountain on Pluto

Wright Mons is a large, roughly circular mountain and likely cryovolcano on the dwarf planet Pluto. Discovered by the New Horizons spacecraft in 2015, it is located southwest of Sputnik Planitia within Hyecho Palus, adjacent to the Tenzing Montes and Belton Regio. A relatively young geological feature, Wright Mons has attracted attention as one of the most apparent examples of recent geological activity on Pluto and borders numerous other similarly young features. Numerous semi-regular hills surround and partially construct the flanks of Wright Mons. Their nature remains unexplained, with few, if any, direct analogs elsewhere in the Solar System.

<span class="mw-page-title-main">Burney (crater)</span> Multi-ring impact basin on Pluto

Burney is the second-largest known impact basin on the dwarf planet Pluto. With a diameter of over 290 kilometres and possibly up to 350 kilometres, it is the second-largest known impact basin on Pluto, after the Sputnik Planitia basin. Burney is the only known impact basin on Pluto with visible multiple rims and is thus classified as a multi-ringed impact basin, though its rings have been heavily eroded due to Burney's age.

<span class="mw-page-title-main">Geology of Triton</span> Geologic structure and composition of Triton

The geology of Triton encompasses the physical characteristics of the surface, internal structure, and geological history of Neptune's largest moon Triton. With a mean density of 2.061 g/cm3, Triton is roughly 15-35% water ice by mass; Triton is a differentiated body, with an icy solid crust atop a probable subsurface ocean and a rocky core. As a result, Triton's surface geology is largely driven by the dynamics of water ice and other volatiles such as nitrogen and methane. Triton's geology is vigorous, and has been and continues to be influenced by its unusual history of capture, high internal heat, and its thin but significant atmosphere.

<span class="mw-page-title-main">Tuonela Planitia</span> Walled plain on Triton

Tuonela Planitia is an elongated plain and probable cryolava lake on Neptune's moon Triton. Located in Triton's northern hemisphere within Monad Regio, it overlies part of Triton's unusual cantaloupe terrain. As with neighboring Ruach Planitia and the other walled plains on Triton, Tuonela Planitia is among the youngest features on Triton's surface.

<span class="mw-page-title-main">Ruach Planitia</span> Walled plain on Triton

Ruach Planitia is a roughly circular flat plain and probable cryolava lake on Neptune's moon Triton. It is located in Triton's northern hemisphere within Monad Regio and directly borders the cryovolcanic plains of Cipango Planum to the east and Tuonela Planitia to the west. Ruach Planitia, along with the other three walled plains of Triton, is one of the youngest and flattest features observed on the moon.

References

  1. 1 2 3 "Luna Linea". Gazetteer of Planetary Nomenclature. USGS Astrogeology Research Program. (Center Latitude: 19.88°, Center Longitude: 22.78°; Planetocentric, +East)
  2. Stern, S. A.; White, O. L.; McGovern, P. J.; et al. (March 2024). "Pluto's Far Side". Icarus. 356. Bibcode:2021Icar..35613805S. doi: 10.1016/j.icarus.2020.113805 .