Wet moon

Last updated
The orbit of a dry moon (left) and wet moon (right) Moon paths.gif
The orbit of a dry moon (left) and wet moon (right)

A wet moon (also called a Cheshire moon) is the visual phenomenon when the "horns" of the crescent Moon point up at an angle, away from the horizon, so that the crescent takes on the appearance of a bowl or smile. A wet moon occurs when the crescent Moon is low above the horizon and at a point more or less directly above the Sun's (invisible) position below the horizon. This in turn is determined by the positions of the Moon and Earth in their respective orbits, the inclinations of these orbits relative to one another and to Earth's celestial equator, and the observer's latitude on Earth. [1] Wet moons occur routinely in the tropics (where the Sun and Moon rise and set nearly vertically), but rarely in the polar regions (where the Sun and Moon rise and set at a glancing angle or not at all).

Contents

By contrast, a dry moon is one where the crescent of the moon is at any other angle. [2] [3]

Name

The terms wet moon and dry moon originate from Hawaiian mythology, where it was thought that the Moon appeared as a bowl that would fill up with rainwater. The period when this is most common, January 20 to February 18, corresponds with Kaelo the Water Bearer in Hawaiian astrology and makes the Moon known as the "dripping wet moon". [4] As summer comes, the crescent shape shifts, pouring out the water and causing the summer rains. After the "bowl" empties, it dries out and rights itself, creating the "dry moon". However, others say that this is a wet moon because it permitted the water to pour out.

The term Cheshire moon is a reference to the smile of the Cheshire Cat from Lewis Carroll's novel Alice's Adventures in Wonderland .

Explanation

Approximate moon phases of the moon at selected latitudes at moonrise (at moonset, the orientation is vertically mirrored) Moon phases by latitude.svg
Approximate moon phases of the moon at selected latitudes at moonrise (at moonset, the orientation is vertically mirrored)

The annual path that the Sun appears to follow against the background of relatively fixed stars is known as the ecliptic. Since the Moon's orbit is inclined 5.14° to the ecliptic, the Moon will always remain within about 5° north or south of the ecliptic. For half of a sidereal month (with respect to the stars), the Moon is either north or south of the ecliptic. The two points where the Moon's orbit intersects that of Earth are called the lunar nodes; at the ascending node, the Moon moves north of the ecliptic, while at the descending node, it moves south. Eclipses occur at these points, hence the name ecliptic. The nodes precess around the ecliptic axis at the rate of one circuit every 18.6 years. The ecliptic makes the steepest angle to the horizon at the equinoxes. Since the crescent Moon appears near the Sun, the crescent would appear to lie on its back when low above the horizon around the equinoxes.

See also

Related Research Articles

<span class="mw-page-title-main">Declination</span> Astronomical coordinate analogous to latitude

In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or south (negative) of the celestial equator, along the hour circle passing through the point in question.

<span class="mw-page-title-main">Ecliptic</span> Apparent path of the Sun on the celestial sphere

The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.

<span class="mw-page-title-main">Lunar phase</span> Shape of the Moons sunlit portion as viewed from Earth

A lunar phase or Moon phase is the apparent shape of the Moon's directly sunlit portion as viewed from the Earth. In common usage, the four major phases are the new moon, the first quarter, the full moon and the last quarter; the four minor phases are waxing crescent, waxing gibbous, waning gibbous, and waning crescent. A lunar month is the time between successive recurrences of the same phase: due to the eccentricity of the Moon's orbit, this duration is not perfectly constant but averages about 29.5 days.

A solstice is the time when the Sun reaches its most northerly or southerly excursion relative to the celestial equator on the celestial sphere. Two solstices occur annually, around 20-22 June and 20-22 December. In many countries, the seasons of the year are defined by reference to the solstices and the equinoxes.

<span class="mw-page-title-main">Year</span> Time of one planets orbit around a star

A year is the time taken for astronomical objects to complete one orbit. For example, a year on Earth is the time taken for Earth to revolve around the Sun. Generally, a year is taken to mean a calendar year, but the word is also used for periods loosely associated with the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc. The term can also be used in reference to any long period or cycle, such as the Great Year.

<span class="mw-page-title-main">Zodiac</span> Area of the sky divided into twelve signs

The zodiac is a belt-shaped region of the sky that extends approximately 8° north and south of the ecliptic, the apparent path of the Sun across the celestial sphere over the course of the year. Also within this zodiac belt appear the Moon and the brightest planets, along their orbital planes. The zodiac is divided along the ecliptic into 12 equal parts ("signs"), each occupying 30° of celestial longitude. These signs roughly correspond to the astronomical constellations with the following modern names: Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces.

<span class="mw-page-title-main">Axial precession</span> Change of rotational axis in an astronomical body

In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particular, axial precession can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 26,000 years. This is similar to the precession of a spinning top, with the axis tracing out a pair of cones joined at their apices. The term "precession" typically refers only to this largest part of the motion; other changes in the alignment of Earth's axis—

<span class="mw-page-title-main">Apsis</span> Either of two extreme points in a celestial objects orbit

An apsis is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides is the line connecting the two extreme values.

The orbital period is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit.

In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of a body, the node of its orbit relative to a reference plane, the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit.

<span class="mw-page-title-main">Lunar node</span> Where the orbit of the Moon intersects the Earths ecliptic

A lunar node is either of the two orbital nodes of the Moon, that is, the two points at which the orbit of the Moon intersects the ecliptic. The ascending node is where the Moon moves into the northern ecliptic hemisphere, while the descending node is where the Moon enters the southern ecliptic hemisphere.

<span class="mw-page-title-main">Lunar precession</span> Changes in the moons rotation and orbit

Lunar precession is a term used for three different precession motions related to the Moon. First, it can refer to change in orientation of the lunar rotational axis with respect to a reference plane, following the normal rules of precession followed by spinning objects. In addition, the orbit of the Moon undergoes two important types of precessional motion: apsidal and nodal.

<span class="mw-page-title-main">Earth's orbit</span> Trajectory of Earth around the Sun

Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi), or 8.317 light-minutes, in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes 365.256 days, during which time Earth has traveled 940 million km (584 million mi). Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun.

<span class="mw-page-title-main">Longitude of periapsis</span>

In celestial mechanics, the longitude of the periapsis, also called longitude of the pericenter, of an orbiting body is the longitude at which the periapsis would occur if the body's orbit inclination were zero. It is usually denoted ϖ.

<span class="mw-page-title-main">Spherical astronomy</span> Branch of astronomy about the celestial sphere

Spherical astronomy, or positional astronomy, is a branch of observational astronomy used to locate astronomical objects on the celestial sphere, as seen at a particular date, time, and location on Earth. It relies on the mathematical methods of spherical trigonometry and the measurements of astrometry.

<span class="mw-page-title-main">Lunar standstill</span> Moon stops moving north or south

A lunar standstill or lunistice is when the Moon reaches its furthest north or furthest south point during the course of a month. The declination at lunar standstill varies in a cycle 18.6 years long between 18.134° and 28.725°, due to lunar precession. These extremes are called the minor and major lunar standstills.

<span class="mw-page-title-main">Orbit of the Moon</span> The Moons circuit around Earth

The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days and one revolution relative to the Sun in about 29.53 days. Earth and the Moon orbit about their barycentre, which lies about 4,670 km from Earth's centre, forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about 384,400 km (238,900 mi) from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">Lunar month</span> Time between successive new moons

In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month.

Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.

References

  1. Harrington, Philip; Pascuzzi, Edward (2023-09-21). Astronomy for All Ages: Discovering The Universe Through Activities For Children And Adults. Rowman & Littlefield. pp. 67–68. ISBN   978-1-4930-8183-7.
  2. Hollabaugh, Mark (2017-06-01). The Spirit and the Sky: Lakota Visions of the Cosmos. U of Nebraska Press. p. 85. ISBN   978-1-4962-0040-2.
  3. Popular Astronomy. Goodsell Observatory of Carleton College. 1909. p. 11.
  4. "Why is the crescent moon sometimes lit on the bottom?". starchild.gsfc.nasa.gov. Retrieved 2024-11-20.