Lunar node

Last updated
The lunar nodes are the two points where the Moon's orbital path crosses the ecliptic, the Sun's apparent yearly path on the celestial sphere. Lunar eclipse diagram-en.svg
The lunar nodes are the two points where the Moon's orbital path crosses the ecliptic, the Sun's apparent yearly path on the celestial sphere.

A lunar node is either of the two orbital nodes of the Moon, that is, the two points at which the orbit of the Moon intersects the ecliptic. The ascending (or north) node is where the Moon moves into the northern ecliptic hemisphere, while the descending (or south) node is where the Moon enters the southern ecliptic hemisphere.

Contents

Motion

The Moon crosses the same node every 27.2122 days, an interval called the draconic month (or draconitic month). The line of nodes, the intersection between the two respective planes, has a retrograde motion: for an observer on Earth, it rotates westward along the ecliptic with a period of 18.6 years or 19.3549° per year. When viewed from the celestial north, the nodes move clockwise around Earth, opposite to Earth's own spin and its revolution around the Sun.

Because the orbital plane of the Moon precesses in space, the lunar nodes also precess around the ecliptic, completing one revolution (called a draconic period or nodal period ) in 18.612958 years (6,798.383 days). (This is not the same duration as a saros.) The same cycle measured against an inertial frame of reference, such as International Celestial Reference System (ICRS), a coordinate system relative to the fixed stars, is 18.599525 years.

Eclipses

Nodal precession of the lunar nodes as the Earth revolves around the Sun causes an eclipse season approximately every six months Eclipse vs new or full moons, annotated.svg
Nodal precession of the lunar nodes as the Earth revolves around the Sun causes an eclipse season approximately every six months

A lunar eclipse can occur only when the full Moon is near either lunar node (within 11° 38' ecliptic longitude), while a solar eclipse can occur only when the new Moon is near either lunar node (within 17° 25').

Both solar eclipses of July 2000 (on the 1st and 31st days) occurred around the time when the Moon was at its ascending node. Ascending-node eclipses recur after one draconic year on average, which is about 0.94901 Gregorian year, as do descending-node eclipses.

An Eclipse of the Moon or Sun can occur when the nodes align with the Sun, roughly every 173.3 days. Lunar orbit inclination also determines eclipses; shadows cross when nodes coincide with full and new moon when the Sun, Earth, and Moon align in three dimensions.

In effect, this means that the "tropical year" on the Moon is only 347 days long. This is called the draconic year (or eclipse year). The "seasons" on the Moon fit into this period. For about half of this draconic year, the Sun is north of the lunar equator (but at most 1.543°), and for the other half, it is south of the lunar equator. Obviously, the effect of these seasons is minor compared to the difference between lunar night and lunar day. At the lunar poles, instead of usual lunar days and nights of about 15 Earth days, the Sun will be "up" for 173 days as it will be "down"; polar sunrise and sunset takes 18 days each year. "Up" here means that the centre of the Sun is above the horizon. Lunar polar sunrises and sunsets occur around the time of eclipses (solar or lunar). For example, at the Solar eclipse of March 9, 2016, the Moon was near its descending node, and the Sun was near the point in the sky where the equator of the Moon crosses the ecliptic. When the Sun reaches that point, the center of the Sun sets at the lunar north pole and rises at the lunar south pole.

Names and symbols

The dragon in Peter Apian's Astronomicum Caesareum, 1540 Astronomicum Caesareum (1540).f18.jpg
The dragon in Peter Apian's Astronomicum Caesareum , 1540

The nodes are called by different names in different cultures of the world.

In medieval Arabic texts, alongside the seven classical planets, it was believed that an eighth pseudo-planet was the cause of solar and lunar eclipses, termed al-Tinnīn (the Dragon) or al-Jawzahr (from Classical Persian Gawzahr). [1] The planet was split into two parts representing the lunar nodes, termed the Head (ra’s) and Tail (dhanab) of the mythological dragon. [2] Similarly, the nodes are termed rosh ha-teli u-zenavo (ראש התלי וזנבו)[ verification needed ] in Hebrew, and caput draconis (head of the dragon) or cauda draconis (tail of the dragon) in Latin. [3] The ascending node is referred to as the dragon's head with the astronomical or astrological symbol of ☊ and the descending node is known as the dragon's tail with the symbol ☋.

In Hindu astronomy, the nodes are considered with the seven planets among the nine Navagrahas; the ascending node ☊ is called Rahu and the descending node ☋ is called Ketu . [4] In Tibetan astrology (partially based on the Kalachakra Tantra) these nodes are respectively named Rahu and Kalagni . [5]

Extremes

Inclination extremes

Every 18.6 years, the angle between the Moon's orbit and Earth's equator reaches a maximum of 28°36′, the sum of Earth's equatorial tilt (23°27′) and the Moon's orbital inclination (5°09′) to the ecliptic. This is called major lunar standstill . Around this time, the Moon's declination will vary from −28°36′ to +28°36′. Conversely, 9.3 years later, the angle between the Moon's orbit and Earth's equator reaches its minimum of 18°20′. This is called a minor lunar standstill. The last lunar standstill was a minor standstill in October 2015. At that time the descending node was lined up with the equinox (the point in the sky having right ascension zero and declination zero). The nodes are moving west by about 19° per year. The Sun crosses a given node about 20 days earlier each year.

When the inclination of the Moon's orbit to the Earth's equator is at its minimum of 18°20′, the centre of the Moon's disk will be above the horizon every day from latitudes less than 70°43' (90° − 18°20' – 57' parallax) north or south. When the inclination is at its maximum of 28°36', the centre of the Moon's disk will be above the horizon every day only from latitudes less than 60°27' (90° − 28°36' – 57' parallax) north or south.

At higher latitudes, there will be a period of at least one day each month when the Moon does not rise, but there will also be a period of at least one day each month when the Moon does not set. This is similar to the seasonal behaviour of the Sun, but with a period of 27.2 days instead of 365 days. Note that a point on the Moon can actually be visible when it is about 34 arc minutes below the horizon, due to atmospheric refraction.

Because of the inclination of the Moon's orbit with respect to the Earth's equator, the Moon is above the horizon at the North and South Pole for almost two weeks every month, even though the Sun is below the horizon for six months at a time. The period from moonrise to moonrise at the poles is a tropical month, about 27.3 days, quite close to the sidereal period. When the Sun is the furthest below the horizon (winter solstice), the Moon will be full when it is at its highest point. When the Moon is in Gemini it will be above the horizon at the North Pole, and when it is in Sagittarius it will be up at the South Pole.

The Moon's light is used by zooplankton in the Arctic when the Sun is below the horizon for months and must have been helpful to the animals that lived in Arctic and Antarctic regions when the climate was warmer.

Declination extremes

The Moon's orbit is inclined about 5.14° to the ecliptic; hence, the Moon can be up to about 5° north or south of the ecliptic. The ecliptic is inclined about 23.44° to the celestial equator, whose plane is perpendicular to the rotational axis of Earth. As a result, once during the 18.6-year nodal period (when the ascending node of the Moon's orbit coincides with the vernal equinox), the Moon's declination reaches a maximum and minimum (northern and southern extremes): about 28.6° from the celestial equator. Therefore, the moonrise or moonset azimuth has its northern- and southernmost points on the horizon; the Moon at culmination has its lowest and highest altitude (when the body transits the meridian); and first sightings of the new moon potentially have their latest times. Furthermore, occultations by the Moon of the Pleiades star cluster, which is over 4° north of the ecliptic, occur during a comparatively brief period once every nodal period.

Effect on tides

The precession of the lunar nodes has a small effect on Earth's tidesatmospheric, oceanic, or crustal. [6] [7] The U.S. National Oceanic and Atmospheric Administration (NOAA) determines mean lower low water (MLLW) at a location by averaging the height of the lowest tide recorded at that location each day during a 19-year recording period, known as the National Tidal Datum Epoch. [8] The 19-year recording period is the nearest full-year count to the 18.6-year cycle of the lunar nodes. [9]

In conjunction with sea level rise caused by global warming, lunar nodal precession is predicted to contribute to a rapid rise in the frequency of coastal flooding throughout the 2030s. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Ecliptic</span> Apparent path of the Sun on the celestial sphere

The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.

<span class="mw-page-title-main">Lunar phase</span> Shape of the Moons sunlit portion as viewed from Earth

A lunar phase or Moon phase is the apparent shape of the Moon's directly sunlit portion as viewed from the Earth. In common usage, the four major phases are the new moon, the first quarter, the full moon and the last quarter; the four minor phases are waxing crescent, waxing gibbous, waning gibbous, and waning crescent. A lunar month is the time between successive recurrences of the same phase: due to the eccentricity of the Moon's orbit, this duration is not perfectly constant but averages about 29.5 days.

<span class="mw-page-title-main">Eclipse cycle</span> Calculation and prediction of eclipses

Eclipses may occur repeatedly, separated by certain intervals of time: these intervals are called eclipse cycles. The series of eclipses separated by a repeat of one of these intervals is called an eclipse series.

The saros is a period of exactly 223 synodic months, approximately 6585.321 days, or 18 years, 10, 11, or 12 days, and 8 hours, that can be used to predict eclipses of the Sun and Moon. One saros period after an eclipse, the Sun, Earth, and Moon return to approximately the same relative geometry, a near straight line, and a nearly identical eclipse will occur, in what is referred to as an eclipse cycle. A sar is one half of a saros.

<span class="mw-page-title-main">Lunar precession</span>

Lunar precession is a term used for three different precession motions related to the Moon. First, it can refer to change in orientation of the lunar rotational axis with respect to a reference plane, following the normal rules of precession followed by spinning objects. In addition, the orbit of the Moon undergoes two important types of precessional motion: apsidal and nodal.

<span class="mw-page-title-main">Wet moon</span> Horizontal (bowl appearance) crescent

A wet moon is the visual phenomenon when the "horns" of the crescent Moon point up at an angle, away from the horizon, so that the crescent takes on the appearance of a bowl or smile. A wet moon occurs when the crescent Moon is low above the horizon and at a point more or less directly above the Sun's (invisible) position below the horizon. This in turn is determined by the positions of the Moon and Earth in their respective orbits, the inclinations of these orbits relative to one another and to Earth's celestial equator, and the observer's latitude on Earth. Wet moons occur routinely in the tropics, but rarely in the polar regions.

<span class="mw-page-title-main">Orbital node</span> Point where an orbit crosses a plane of reference to which it is inclined

An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes.

<span class="mw-page-title-main">Orbital pole</span> Celestial coordinate system

An orbital pole is either point at the ends of the orbital normal, an imaginary line segment that runs through a focus of an orbit and is perpendicular to the orbital plane. Projected onto the celestial sphere, orbital poles are similar in concept to celestial poles, but are based on the body's orbit instead of its equator.

A lunar standstill or lunistice is when the Moon reaches its furthest north or furthest south point during the course of a month. The declination at lunar standstill varies in a cycle 18.6 years long between 18.134° and 28.725°, due to lunar precession. These extremes are called the minor and major lunar standstills.

<span class="mw-page-title-main">Orbit of the Moon</span> The Moons circuit around Earth

The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days and one revolution relative to the Sun in about 29.53 days. Earth and the Moon orbit about their barycentre, which lies about 4,670 km (2,900 mi) from Earth's centre, forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about 385,000 km (239,000 mi) from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds.

<span class="mw-page-title-main">May 2040 lunar eclipse</span> 2040 astronomical phenomenon

A total lunar eclipse will take place on May 26, 2040. The northern limb of the Moon will pass through the center of the Earth's shadow. This is the second central lunar eclipse of Saros series 131. This lunar event will occur near perigee, as a result, it will be referred to as a "super flower blood moon" or "super blood moon", though not quite as close to Earth as the eclipse of May 26, 2021.

A partial lunar eclipse took place on Saturday, June 25, 1983, the first of two lunar eclipses in 1983 with an umbral eclipse magnitude of 0.33479. A partial lunar eclipse happens when the Earth moves between the Sun and the Full Moon, but they are not precisely aligned. Only part of the Moon's visible surface moves into the dark part of the Earth's shadow. A partial lunar eclipse occurs when the Earth moves between the Sun and Moon but the three celestial bodies do not form a straight line in space. When that happens, a small part of the Moon's surface is covered by the darkest, central part of the Earth's shadow, called the umbra. The rest of the Moon is covered by the outer part of the Earth's shadow called the penumbra. The Earth's shadow on the moon was clearly visible in this eclipse, with 33% of the Moon in shadow; the partial eclipse lasted for 2 hours and 15 minutes.

<span class="mw-page-title-main">April 1968 lunar eclipse</span> Total lunar eclipse April 13, 1968

A total lunar eclipse took place on Saturday, April 13, 1968, the first of two total eclipses in 1968, the second being on October 6, 1968.

<span class="mw-page-title-main">June 2058 lunar eclipse</span>

A total lunar eclipse will take place on June 6, 2058. The Moon will pass through the center of the Earth's shadow.

A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, May 24, 1910 with an umbral eclipse magnitude of 1.09503. A total lunar eclipse takes place when the Earth comes between the Sun and the Moon and its shadow covers the Moon. Eclipse watchers can see the Moon turn red when the eclipse reaches totality. Total eclipses of the Moon happen at Full Moon when the Sun, Earth, and Moon are aligned to form a line. The astronomical term for this type of alignment is syzygy, which comes from the Greek word for being paired together. The Moon does not have its own light but shines because its surface reflects the Sun's rays. During a total lunar eclipse, the Earth comes between the Sun and the Moon and blocks any direct sunlight from reaching the Moon. The Sun casts the Earth's shadow on the Moon's surface. A shallow total eclipse saw the Moon in relative darkness for 49 minutes and 29.5 seconds. The Moon was 9.503% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 35 minutes and 22.9 seconds in total.

<span class="mw-page-title-main">May 2069 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on May 6, 2069. The eclipse will be a dark one with the southern tip of the Moon passing through the center of the Earth's shadow. This is the first central eclipse of Saros series 132.

<span class="mw-page-title-main">Solar eclipse of December 4, 1983</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on December 4, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo, Zaire, northern Uganda, southern Sudan, northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee, the Moon's apparent diameter was near the average diameter.

<span class="mw-page-title-main">Eclipse season</span> Period when eclipses can occur

An eclipse season is a period, roughly every six months, when eclipses occur. Eclipse seasons are the result of the axial parallelism of the Moon's orbital plane, just as Earth's weather seasons are the result of the axial parallelism of Earth's tilted axis as it orbits around the Sun. During the season, the "lunar nodes" – the line where the Moon's orbital plane intersects with the Earth's orbital plane – align with the Sun and Earth, such that a solar eclipse is formed during the new moon phase and a lunar eclipse is formed during the full moon phase.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">Lunar month</span> Time between successive new moons

In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month.

References

  1. Azarpay, G.; Kilmer, A. D. (1978). "The Eclipse Dragon on an Arabic Frontispiece-Miniature". Journal of the American Oriental Society. 98 (4): 363–374. doi:10.2307/599748. JSTOR   599748.
  2. Carboni, Stefano (1997). Following the Stars: Images of the Zodiac in Islamic Art. New York: The Metropolitan Museum of Art. p. 23.
  3. Sela, Shlomo (2003), Abraham Ibn Ezra and the Rise of Medieval Hebrew Science, Brill's Series in Jewish Studies, vol. 32, Leiden / Boston: Brill, pp. 124–126, 244–245, ISBN   9789004129733
  4. Hartner, Willy (1938), "The Pseudoplanetary Nodes of the Moon's Orbit in Hindu and Islamic Iconographies: A Contribution to the History of Ancient and Medieval Astrology", Ars Islamica, 5 (2): 112–154, JSTOR   4520926
  5. Berzin, Alexander (1987), "An Introduction to Tibetan Astronomy and Astrology", The Tibet Journal, 12 (1): 17–28, JSTOR   43300228
  6. Godin, G. (2015). The Use of Nodal Corrections in the Calculation of Harmonic Constants. The International Hydrographic Review, 63(2). Retrieved from https://journals.lib.unb.ca/index.php/ihr/article/view/23428
  7. Kaye, Clifford A.; Stuckey, Gary W. (1973). "Nodal Tidal Cycle of 18.6 Yr.: Its Importance in Sea-Level Curves of the East Coast of the United States and Its Value in Explaining Long-Term Sea-Level Changes". Geology. 1 (3): 141. Bibcode:1973Geo.....1..141K. doi:10.1130/0091-7613(1973)1<141:NTCOYI>2.0.CO;2. ISSN   0091-7613.
  8. "Tidal Datums". Tides and Currents. NOAA.
  9. "Tidal Datums and Their Applications" (PDF). Tides and Currents. Silver Spring, MD: NOAA (Special Publication NOS CO-OPS 1). June 2000.
  10. Thompson, Philip R.; Widlansky, Matthew J.; Hamlington, Benjamin D.; Merrifield, Mark A.; Marra, John J.; Mitchum, Gary T.; Sweet, William (July 2021). "Rapid increases and extreme months in projections of United States high-tide flooding". Nature Climate Change . 11 (7): 584–590. Bibcode:2021NatCC..11..584T. doi:10.1038/s41558-021-01077-8. ISSN   1758-678X. S2CID   235497055.